![]() |
![]() |
![]() |
|||||||||||||
БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
АнтиферромагнетизмОпределение "Антиферромагнетизм" в Большой Советской Энциклопедии
каждого магнитного иона в отсутствие внешнего поля оказывается равным нулю. Ниже некоторой температуры, получившей название температуры Нееля Tn (ей соответствует максимум на кривой магнитной восприимчивости), силы взаимодействия между магнитными моментами соседних ионов оказываются сильнее, чем разупорядочивающее действие теплового движения. В результате средний магнитный момент каждого иона становится отличным от нуля и принимает определённое значение и направление, в веществе возникает магнитное упорядочение. При Антиферромагнетизм упорядочение отличается тем, что средние магнитные моменты всех (или большей части) ближайших соседей любого иона направлены навстречу его собственному магнитному моменту (при ферромагнетизме они все направлены в одну сторону). Другими словами, при Антиферромагнетизм одноимённые полюсы соседних элементарных магнитиков направлены взаимно противоположно. В каждом антиферромагнетике устанавливается определённый порядок чередования магнитных моментов (примеры которого см. на рис. 2). Порядок чередования магнитных моментов вместе с их направлением относительно кристаллографических осей определяет антиферромагнитную структуру вещества. Такую структуру можно представить себе как систему вставленных друг в друга пространственных решёток магнитных ионов (называются подрешётками), в узлах каждой из которых находятся параллельные друг другу магнитные моменты. При Антиферромагнетизм во все подрешётки входят магнитные ионы одинакового сорта. Поэтому суммарные магнитные моменты подрешёток строго компенсируются, и антиферромагнетик в целом в отсутствие внешнего поля не имеет результирующего магнитного момента. Под действием внешнего магнитного поля антиферромагнетики приобретают слабую намагниченность. Для магнитной восприимчивости антиферромагнетиков типичны значения 10-4 — 10-6 ед. СГС.Долгое время не существовало экспериментальных методов, которые могли бы непосредственно подтвердить существование антиферромагнитной структуры. В 1949 было показано, что антиферромагнитную структуру можно обнаружить и изучить методами нейтронографии. Нейтроны не имеют электрического заряда, но обладают магнитным моментом. Пучок медленных нейтронов, проходящий через антиферромагнетик, взаимодействует с магнитными ионами вещества и испытывает рассеяние. Экспериментально получаемая зависимость числа рассеянных нейтронов от угла рассеяния позволяет определить расположение магнитных ионов в антиферромагнетике и среднее значение их магнитных моментов. За создание антиферромагнитного порядка и определённую ориентацию магнитных моментов ионов относительно кристаллографических осей ответственны два рода сил: за порядок — силы обменного взаимодействия (электрической природы), за ориентацию — силы магнитной анизотропии. В Антиферромагнетизм обменные силы стремятся установить каждую пару соседних магнитных моментов строго антипараллельно. Но они не могут предопределить направление моментов относительно кристаллографических осей. Это направление называется осью лёгкого намагничивания и определяется силами магнитной анизотропии. Последние представляют собой результат магнитного взаимодействия соседних магнитных ионов и более сложных взаимодействий электронов магнитных ионов с действующими внутри кристалла электрическими полями. В соответствии с этими двумя типами сил при теоретическом описании Антиферромагнетизм вводят 2 эффективных магнитных поля: обменное поле Не и поле анизотропии На. Представление о том, что в антиферромагнетике действуют 2 эффективных магнитных поля, позволяет объяснить многие свойства., в частности их поведение в переменных внешних магнитных полях. Переход из парамагнитного состояния в антиферромагнитное при температуре Нееля Tn происходит путём (фазового перехода 2-го рода. Особенность этого перехода состоит в плавном (без скачка), но очень крутом нарастании среднего значения магнитного момента каждого иона вблизи Tn (рис. 3). Этим объясняются указанные выше аномалии — возрастание удельной теплоёмкости вблизи Tn и подобное ему температурное изменение коэффициента теплового расширения, модулей упругости и ряда др. величин.
Изучение антиферромагнетиков внесло существенный вклад в развитие современных представлений о физике магнитных явлений. Открыты: новые типы магнитных структур — слабый ферромагнетизм, геликоидальные структуры и др. (см. Магнитная структура), обнаружены новые явления: пьезомагнетизм, магнетоэлектрический эффект, расширены представления об обменном и других типах взаимодействия в магнетиках. Практического применения Антиферромагнетизм пока не нашёл. Это связано с тем, что при переходе в антиферромагнитное состояние большая часть макроскопических физических свойств меняется мало. Исключение составляют высокочастотные свойства антиферромагнетиков. Во многих антиферромагнетиках наблюдается сильное резонансное поглощение электромагнитного излучения для длин волн от 1 см до 0,001 см (см. Антиферромагнитный резонанс).
Лит.: Киренский Л. В., Магнетизм, 2 изд., М., 1967; Боровик-Романов Антиферромагнетизм С., Антиферромагнетизм, в сборнике: Антиферромагнетизм и ферриты, М., 1962 (Итоги науки. Физ.-мат. науки, т. 4); Редкоземельные ферромагнетики и антиферромагнетики, М., 1965.
Статья про "Антиферромагнетизм" в Большой Советской Энциклопедии была прочитана 1067 раз |
TOP 20
|
|||||||||||||