БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ
Навигация:

Библиотека DJVU
Photogallery

БСЭ

Статистика:


Штрафных функций метод

Значение слова "Штрафных функций метод" в Большой Советской Энциклопедии


Штрафных функций метод, метод сведения задач об отыскании условного (относительного) экстремума функций к задачам отыскания безусловного (абсолютного) экстремума. Рассмотрим Штрафных
функций метод на примере задач математического программирования. Пусть требуется минимизировать функцию j(х) на множестве X = {x: fi (x) ³ 0, I = 1, 2,... m} n-мерного евклидова пространства. Штрафной функцией, или штрафом (за нарушение ограничений fi (x) ³ 0, i = 1, 2,... m), называют функцию y (х, а), зависящую от х и числового параметра а > 0, обладающую след. свойствами: y(х, а) = 0, если х Î Х и y(х, а) > 0, если x Ï X. Построим функцию M (x, a) = j(x) + y(х, a) и обозначим через x (a) любую точку её безусловного глобального минимума. Пусть . Функцию y(х, a) выбирают таким образом, чтобы j(x (a))® j* при a ® +¥. В качестве j(х, a) часто выбирают функцию

  , q ³ 1.

  Выбор конкретного вида функции y(x, a) связан как с проблемой сходимости Штрафных функций метод, так и с проблемами, возникающими при решении задачи безусловной минимизации функции М (х, a).

  В несколько более общей постановке Штрафных функций метод заключается в сведении задачи минимизации функции j(х) на множестве Х к задаче минимизации некоторой параметрической функции М (х, a) на множестве более простой структуры с точки зрения эффективности применения численных методов минимизации, чем исходное множество X.

 

  Лит.: Моисеев Н. Н., Элементы теории оптимальных систем, М., 1975; Фиакко А., Мак-Кормик Г., Нелинейное программирование, пер. с англ., М., 1972; Сеа Ж., Оптимизация, пер. с франц., М., 1973.

  В. Г. Карманов.

 

В Большой Советской Энциклопедии рядом со словом "Штрафных функций метод"

Штраф | Буква "Ш" | В начало | Буквосочетание "ШТ" | Штрбске-Плесо


Статья про слово "Штрафных функций метод" в Большой Советской Энциклопедии была прочитана 8970 раз


Интересное