Железоуглеродистые сплавы

Определение "Железоуглеродистые сплавы" в Большой Советской Энциклопедии


Белый чугун (структура)
Железоуглеродистые сплавы, сплавы железа с углеродом на основе железа. Варьируя состав и структуру, получают Железоуглеродистые сплавы с разнообразными свойствами, что делает их универсальными материалами. Различают чистые Железоуглеродистые сплавы (со следами примесей), получаемые в небольших количествах для исследовательских целей, и технические Железоуглеродистые сплавыстали (до 2%С) и чугуны (св. 2% С), мировое производство которых измеряется сотнями млн. т. Технические Железоуглеродистые сплавы содержат примеси. Их делят на обычные (фосфор Р, сера S, марганец Mn, кремний Si, водород Н, азот N, кислород О), легирующие (хром Cr, никель Ni, молибден Mo, вольфрам W, ванадий V, титан Ti, кобальт Со, медь Cu и др.) и модифицирующие (магний Mg, церий Ce, кальций Ca и др.). В большинстве случаев основой, определяющей строение и свойства сталей и чугунов, является система Fe — С. Начало научному изучению этой системы положили русские металлурги П. П. Аносов (1831) и Д. К. Чернов (1868). Аносов впервые применил микроскоп при исследовании Железоуглеродистые сплавы, а Чернов установил их кристаллическую природу, обнаружил дендритную кристаллизацию и открыл в них превращения в твёрдом состоянии. Из зарубежных учёных, способствовавших созданию диаграммы состояния Fe — С сплавов, следует отметить Ф. Осмонда (Франция), У. Ч. Робертса-Остена (Англия), Б. Розебома (Голландия) и П. Геренса (Германия).



Белый чугун (структура)
Фазовые состояния Железоуглеродистые сплавы при разных составах и температурах описываются диаграммами стабильного (рис. 1, а) и метастабильного (рис. 1, б) равновесий. В стабильном состоянии в Железоуглеродистые сплавы встречаются жидкий раствор углерода в железе (Ж), три твёрдых раствора углерода в полиморфных модификациях железа (табл. 1)


Белый чугун (структура)
Табл. 1.— Кристаллические фазы железоуглеродистых сплавов

Название


Железоуглеродистые сплавы (диаграмма состояния)
фазы


Природа фазы

Структура

a-феррит

Твердый раствор внедрения углерода в a-Fe

Объемноцен
трированная кубическая

Аустенит

Твердый раствор внедрения углерода в g-Fe

Гранецентри
рованная кубическая

d-феррит

Твердый раствор внедрения углерода в d-Fe

Объемноцен
трированная кубическая

Графит

Полиморфная модификация углерода

Гексогональная слоистая

Цементит

Карбид железа Fe2C

Ромбическая

a-раствор (a-феррит), g-раствор (аустенит) и d-раствор (d-феррит), и графит (Г). В метастабильном состоянии в Железоуглеродистые сплавы встречаются Ж, a-, g-, d-растворы и карбид железа Fe3C — цементит (Ц). Области устойчивости Железоуглеродистые сплавы в однофазных и двухфазных состояниях указаны на диаграммах. При некоторых условиях в Железоуглеродистые сплавы могут существовать в равновесии и три фазы. При температурах НВ возможно перитектич. равновесие d + g + Ж, ECF эвтектическое стабильное равновесие g + Ж + Г; при ECF — эвтектическое метастабильное равновесие g + Ж + Ц; при P"S"K" — эвтектоидное стабильное равновесие a + g + Г", при PSK эвтектоидное метастабильное равновесие a + g + Ц. Диаграммы а и б вычерчиваю и в одной координатной системе (рис. 1, в). Такая сдвоенная диаграмма наглядно характеризует относительное смещение однотипных линий равновесия и облегчает анализ Железоуглеродистые сплавы, содержащих стабильные и метастабильные фазы одновременно.


Железоуглеродистые сплавы (диаграмма состояния)
Основной причиной появления в Железоуглеродистые сплавы высокоуглеродистой метастабильной фазы в виде цементита являются трудности формирования графита. Образование графита в жидком растворе Ж и твёрдых растворах a и g связано с практически полным удалением атомов железа из участков сплава, где зарождается и растет графит. Оно требует значительных атомных передвижений. Если Железоуглеродистые сплавы охлаждаются медленно или длительно выдерживаются при повышенных температурах, атомы железа успевают удалиться из мест, где формируется графит, и тогда возникают стабильные состояния. При ускоренном охлаждении и недостаточных выдержках удаление малоподвижных атомов железа задерживается, почти все они остаются на месте, и тогда в жидких и твёрдых растворах зарождается и растет цементит. Необходимая для этого диффузия легкоподвижных при повышенных температурах атомов углерода, не требующая больших выдержек, успевает происходить и при ускоренном охлаждении. Помимо основных фаз, указанных на диаграммах, в технических Железоуглеродистые сплавы встречаются небольшие количества и др. фаз, появление которых обусловлено наличием примесей. Часто встречаются сульфиды (FeS, MnS), фосфиды (Fe3P), окислы железа и примесей (FeO, MnO, Al2O3, Cr2O3, TiO2 и др.), нитриды (FeN, AlN) и др. неметаллические фазы. Точечными линиями на диаграммах отмечены точки Кюри, наблюдающиеся в Железоуглеродистые сплавы в связи с магнитными превращениями феррита (768°С) и цементита (210°С).


Железоуглеродистые сплавы (диаграмма состояния)
Строение Железоуглеродистые сплавы определяется составом, условиями затвердевания и структурными изменениями в твёрдом состоянии. В зависимости от содержания углерода Железоуглеродистые сплавы делят на стали и чугуны. Стали с концентрацией углерода, меньшей чем эвтектоидная S" и S (табл. 2), называют доэвтектоидными, а более высокоуглеродистые — заэвтектоидными. Чугуны с концентрацией углерода, меньшей чем эвтектическая C1 и С, называют доэвтектическими, а более высокоуглеродистые — заэвтектическими.


Ковкий чугун (структура)
Табл. 2.— Координаты точек диаграмм Fe — С

Точка

Температура, °С

Концентрация углерода, %

A

1539

0,000

 

B

1494

0,50

 

С"

1152

4,26

 

С

1145

4,30

 

N

1400

0,000

 

Н

1494

0,10

 

J

1494

0,16

 

G

910

0,000

 

E"

1152

2,01

 

E

1145

2,03

 

S"

738

0,68

 

S

723

0,80

 

P"

738

0,023

 

P

723

0,025

 


Серый чугун (структура)

  Затвердевание сталей, содержащих до 0,5% С, начинается с выпадения кристаллов 8-раствора обычно в виде дендритов. При концентрациях углерода до 0,1% кристаллизация заканчивается образованием однофазной структуры d-раствора. Стали с 0,1—0,5% С после выделения некоторого количества 8-раствора испытывают перитектическое превращение Ж + d —> g. В интервале концентраций 0,10—0,16% С оно приводит к полному затвердеванию, а в интервале 0,16—0,50% С кристаллизация завершается при охлаждении до температуры линии IE. В Железоуглеродистые сплавы с 0,5—4,26% С кристаллизация начинается с выделения g-раствора также в виде дендритов. Стали полностью затвердевают в интервале температур, ограниченном линиями ВС и IE, приобретая однофазную аустенитную структуру. Затвердевание же чугунов, начинаясь с выделения избыточного (первичного) g- раствора, заканчивается эвтектическим распадом остатка жидкости по одному из трёх возможных вариантов: Ж ® g + Г, Ж ®  g + Ц или Ж ® (+ Г + Ц. В первом случае получаются т. н. серые чугуны, во втором — белые, в третьем — половинчатые. В зависимости от условий кристаллизации графит выделяется в виде разветвленных (рис. 2, ж) или шаровидных (рис. 2, з) включений, а цементит — в виде монолитных пластин (рис. 2, и) или проросших разветвленным аустенитом (т. н. ледебурит, рис. 2, к). В Железоуглеродистые сплавы, содержащих более 4,26—4,3% С, кристаллизация переохлажденного ниже линии D1C1 расплава в условиях медленного охлаждения начинается с образования первичного графита разветвленной или шаровидной формы. В условиях ускоренного охлаждения (при переохлаждениях ниже линии DC) образуются пластины первичного цементита (рис. 2, л). При промежуточных скоростях охлаждения выделяются и графит, и цементит. Кристаллизация заэвтектических чугунов, так же как и доэвтектических, завершается распадом остатка жидкости на смесь g- раствора с высокоуглеродистыми фазами.


Серый чугун (структура)
Строение затвердевших Железоуглеродистые сплавы существенно изменяется при дальнейшем охлаждении. Эти изменения обусловлены полиморфными превращениями железа, уменьшением растворимости в нём углерода, графитизацией цементита. Структура может изменяться в твёрдом состоянии в результате процессов рекристаллизации твёрдых растворов, сфероидизации кристаллов (из неравноосных становятся равноосными), коалесценции (одни кристаллы цементита укрупняются за счёт других) высокоуглеродистых фаз.


Сталь с 0,91% С (структура)
Полиморфные превращения Железоуглеродистые сплавы связаны с перестройками гранецентрированной кубической (ГЦК) решётки g-Fe и объёмноцентрированной решётки (ОЦК) a- и d-Fe


Сталь с 0,15% С (структура)
В зависимости от условий охлаждения и нагревания полиморфные превращения твёрдых растворов происходят разными путями. При небольших переохлаждениях (и перегревах) имеет место т. н. нормальная перестройка решёток железа, осуществляющаяся в результате неупорядоченных индивидуальных переходов атомов от исходной фазы к образующейся; она сопровождается диффузионным перераспределением углерода между фазами. При больших скоростях охлаждения или нагревания полиморфные превращения твёрдых растворов происходят бездиффузионным (мартенситным) путём. Решётка железа перестраивается быстрым сдвиговым механизмом в результате упорядоченных коллективных смещений атомов без диффузионного перераспределения углерода между фазами. Например, при закалке Железоуглеродистые сплавы в воде g- раствор переходит в a- раствор того же состава. Этот пересыщенный углеродом a- раствор называют мартенситом (рис. 2, е). Превращения при промежуточных условиях могут совмещать в себе сдвиговую перестройку решётки железа с диффузионным перераспределением углерода (бейнитное превращение). Формирующиеся при этом структуры существенно различны. В первом случае образуются равноосные с малым числом дефектов кристаллы твёрдого раствора (рис. 2, а). Во втором и третьем — игольчатые и пластинчатые кристаллы (рис. 2, е) с многочисленными двойниками и линиями скольжения. Структура Железоуглеродистые сплавы изменяется также и в связи с изменением растворимости углерода в a- и g-железе при охлаждении и нагревании. При охлаждении растворы пересыщаются углеродом и выделяются кристаллы высокоуглеродистых фаз (цементита и графита). При нагревании имеющиеся высокоуглеродистые фазы растворяются в a- и g-фазах.


Сталь с 0,65% С (структура)
Зарождение и рост кристаллов цементита в пересыщенных растворах происходит обычно с большей скоростью, чем образование графита, и поэтому Железоуглеродистые сплавы часто метастабильны. В зависимости от переохлаждения цементит, выделяющийся из твёрдого раствора, может иметь вид равноосных кристаллов, пограничной сетки, пластин и игл (рис. 2, г, д). При высокотемпературных выдержках кристаллы цементита сфероидизируются; может происходить и процесс коалесценции. Если Железоуглеродистые сплавы, содержащие цементит, длительно выдерживать при повышенных температурах, происходит графитизация — зарождается и растет графит, а цементит растворяется, Этот процесс используется при производстве изделий из графитизированной стали и ковкого чугуна (рис. 2, м). Важную роль при формировании структуры Железоуглеродистые сплавы в твёрдом состоянии играет эвтектоидный распад т-раствора на a-раствор и высокоуглеродистую фазу. При очень малых переохлаждениях образуются феррит и графит (рис. 2, м), при небольшом увеличении переохлаждения — феррит и сфероидизированный цементит (рис. 2, г), затем (рис. 2, в) смесь феррита и цементита приобретает пластинчатое строение перлита, тем более тонкое, чем больше переохлаждение. При персохлаждениях, измеряемых сотнями градусов, эвтектоидный распад подавляется, и g- раствор превращается в мартенсит (рис. 2, е). Строение Железоуглеродистые сплавы можно изменять в широких пределах. Основными методами управления структурой Железоуглеродистые сплавы являются изменения химического состава, условий затвердевания, пластической деформации, термической и термомеханической обработок. Меняя фазовый состав, величину, форму, распределение и дефектность кристаллов, можно широко варьировать и свойства Железоуглеродистые сплавы Например, важнейшие при эксплуатации Железоуглеродистые сплавы механические свойства изменяются в следующих пределах: твёрдость от 60 до 800 HB; предел прочности 2·104—3,5·106 н/см2 (2·103—3,5·105 кгс/см2); относительное удлинение от 0 до 70%.


Сталь с 0,8% С (структура)
Лит.: Д. К. Чернов и наука о металлах, под ред. Н. Т. Гудцова, Л.—М., 1950; Бочвар А. А., Металловедение, 5 изд., М., 1956; Лившиц Б. Г., Металлография, М., 1963; Тыркель Е., История развития диаграммы железоуглерод, пер. с польск., М., 1968; Бунин К. П., Баранов А. А., Металлография, М., 1970.
  К. П. Бунин.


Сталь с 0,85% С (структура)
Сталь с 1,18% С (структура)

"БСЭ" >> "Ж" >> "ЖЕ" >> "ЖЕЛ" >> "ЖЕЛЕ"

Статья про "Железоуглеродистые сплавы" в Большой Советской Энциклопедии была прочитана 740 раз
Бургер двойного помола
Куриный суп

TOP 20