БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ
Навигация:

Библиотека DJVU
Photogallery

БСЭ

Статистика:


Интерполяция (матем.)

Значение слова "Интерполяция (матем.)" в Большой Советской Энциклопедии


Интерполяция в математике и статистике, отыскание промежуточных значений величины по некоторым известным её значениям. Например, отыскание значений функции f (x) в точках х,
лежащих между точками (узлами Интерполяция (матем.)) x0 < x1 < ... < xn, по известным значениям yi = f (xi) (где i = 0, 1, ..., n). В случае, если х лежит вне интервала, заключённого между x0 и xn, аналогичная задача наывается задачей экстраполяции. При простейшей линейной Интерполяция (матем.) значение f (x) в точке х, удовлетворяющей неравенствам x0 < x < x1, принимают равным значению



линейной функции, совпадающей с f (x) в точках х = x0 и х = x1. Задача Интерполяция (матем.) со строго математической точки зрения является неопределённой: если про функцию f (x) ничего неизвестно, кроме её значений в точках x0, x1,..., хn, то её значение в точке х, отличной от всех этих точек, остаётся совершенно произвольным. Задача Интерполяция (матем.) приобретает определённый смысл, если функция f (x) и её производные подчинены некоторым неравенствам. Если, например, заданы значения f (x0) и f (x1) и известно, что при x0 < x < x1 выполняется неравенство |f¢’’(x)| £ M, то погрешность формулы (*) может быть оценена при помощи неравенства



  Более сложные интерполяционные формулы имеет смысл применять лишь в том случае, если есть уверенность в достаточной «гладкости» функции, т. е. в том, что она обладает достаточным числом не слишком быстро возрастающих производных.

  Кроме вычисления значений функций, Интерполяция (матем.) имеет и многочисленные другие приложения (например, при приближённом интегрировании, приближённом решении уравнений, в статистике при сглаживании рядов распределения с целью устранения случайных искажений).

 

  Лит.: Гончаров В. Л., Теория интерполирования и приближения функций, 2 изд., М., 1954; Крылов А. Н., Лекции о приближённых вычислениях, 6 изд., М., 1954; Юл Дж. Э., Кендэл М. Дж., Теория статистики, пер. с англ., 14 изд., М., 1960.

В Большой Советской Энциклопедии рядом со словом "Интерполяция (матем.)"

Буква "И" | В начало | Буквосочетание "ИН" |


Статья про слово "Интерполяция (матем.)" в Большой Советской Энциклопедии была прочитана 2577 раз


Интересное