Инфракрасное излучение

Определение "Инфракрасное излучение" в Большой Советской Энциклопедии

Кривая пропускания атмосферы
Инфракрасное излучение, ИК излучение, инфракрасные лучи, электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны l = 0,74 мкм) и коротковолновым радиоизлучением (l ~ 1-2 мм). Инфракрасную область спектра обычно условно разделяют на ближнюю (l от 0,74 до 2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм).



Кривые излучения (абсолютно черное тело и вольфрам)
Инфракрасное излучение было открыто в 1800 английским учёным В. Гершелем, который обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается (рис. 1). В 19 в. было доказано, что Инфракрасное излучение подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет. В 1923 советский физик А. А. Глаголева-Аркадьева получила радиоволны с l ~ 80 мкм, т. е. соответствующие инфракрасному диапазону длин волн. Таким образом, экспериментально было доказано, что существует непрерывный переход от видимого излучения к Инфракрасное излучение и радиоволновому и, следовательно, все они имеют электромагнитную природу.


Опыт Гершеля
Спектр Инфракрасное излучение, так же как и спектр видимого и ультрафиолетового излучений, может состоять из отдельных линий, полос или быть непрерывным в зависимости от природы источника Инфракрасное излучение Возбуждённые атомы или ионы испускают линейчатые инфракрасные спектры. Например, при электрическом разряде пары ртути испускают ряд узких линий в интервале 1,014-2,326 мкм; атомы водорода - ряд линий в интервале 0,95-7,40 мкм. Возбуждённые молекулы испускают полосатые инфракрасные спектры, обусловленные их колебаниями и вращениями (см. Молекулярные спектры). Колебательные и колебательно-вращательные спектры расположены главным образом в средней, а чисто вращательные - в далекой инфракрасной области. Так, например, в спектре излучения газового пламени наблюдается полоса около 2,7 мкм, испускаемая молекулами воды, и полосы с l » 2,7 мкм и l » 4,2 мкм, испускаемые молекулами углекислого газа. Нагретые твёрдые и жидкие тела испускают непрерывный инфракрасный спектр. Нагретое твёрдое тело излучает в очень широком интервале длин волн. При низких температурах (ниже 800 К) излучение нагретого твёрдого тела почти целиком расположено в инфракрасной области и такое тело кажется тёмным. При повышении температуры доля излучения в видимой области увеличивается и тело вначале кажется тёмно-красным, затем красным, жёлтым и, наконец, при высоких температурах (выше 5000 К) - белым; при этом возрастает как полная энергия излучения, так и энергия Инфракрасное излучение



Оптические свойства веществ (прозрачность, коэффициент отражения, коэффициент преломления) в инфракрасной области спектра, как правило, значительно отличаются от оптических свойств в видимой и ультрафиолетовой областях. Многие вещества, прозрачные в видимой области, оказываются непрозрачными в некоторых областях Инфракрасное излучение и наоборот. Например, слой воды толщиной в несколько см непрозрачен для Инфракрасное излучение с l > 1 мкм (поэтому вода часто используется как теплозащитный фильтр), пластинки германия и кремния, непрозрачные в видимой области, прозрачны в инфракрасной (германий для l > 1,8 мкм, кремний для l > 1,0 мкм). Чёрная бумага прозрачна в далёкой инфракрасной области. Вещества, прозрачные для Инфракрасное излучение и непрозрачные в видимой области, используются в качестве светофильтров для выделения Инфракрасное излучение Ряд веществ даже в толстых слоях (несколько см) прозрачен в достаточно больших участках инфракрасного спектра. Из таких веществ изготовляются различные оптические детали (призмы, линзы, окна и пр.) инфракрасных приборов. Например, стекло прозрачно до 2,7 мкм, кварц - до 4,0 мкм и от 100 мкм до 1000 мкм, каменная соль - до 15 мкм, йодистый цезий - до 55 мкм. Полиэтилен, парафин, тефлон, алмаз прозрачны для l > 100 мкм. У большинства металлов отражательная способность для Инфракрасное излучение значительно больше, чем для видимого света, и возрастает с увеличением длины волны Инфракрасное излучение (см. Металлооптика). Например, коэффициент отражения Al, Au, Ag, Cu при l = 10 мкм достигает 98%. Жидкие и твёрдые неметаллические вещества обладают в Инфракрасное излучение селективным отражением, причём положение максимумов отражения зависит от химического состава вещества.


Проходя через земную атмосферу, Инфракрасное излучение ослабляется в результате рассеяния и поглощения. Азот и кислород воздуха не поглощают Инфракрасное излучение и ослабляют его лишь в результате рассеяния, которое, однако, для Инфракрасное излучение значительно меньше, чем для видимого света. Пары воды, углекислый газ, озон и др. примеси, имеющиеся в атмосфере, селективно поглощают Инфракрасное излучение Особенно сильно поглощают Инфракрасное излучение пары воды, полосы поглощения которых расположены почти во всей инфракрасной области спектра, а в средней инфракрасной области - углекислый газ. В приземных слоях атмосферы в средней инфракрасной области имеется лишь небольшое число «окон», прозрачных для Инфракрасное излучение (рис. 2). Наличие в атмосфере взвешенных частиц - дыма, пыли, мелких капель воды (дымка, туман) - приводит к дополнительному ослаблению Инфракрасное излучение в результате рассеяния его на этих частицах, причём величина рассеяния зависит от соотношения размеров частиц и длины волны Инфракрасное излучение При малых размерах частиц (воздушная дымка) Инфракрасное излучение рассеивается меньше, чем видимое излучение (что используется в инфракрасной фотографии), а при больших размерах капель (густой туман) Инфракрасное излучение рассеивается так же сильно, как и видимое.


Источники Инфракрасное излучение Мощным источником Инфракрасное излучение является Солнце, около 50% излучения которого лежит в инфракрасной области. Значительная доля (от 70 до 80%) энергии излучения ламп накаливания с вольфрамовой нитью приходится на Инфракрасное излучение (рис. 3). При фотографировании в темноте и в некоторых приборах ночного наблюдения лампы для подсветки снабжаются инфракрасным светофильтром, который пропускает только Инфракрасное излучение Мощным источником Инфракрасное излучение является угольная электрическая дуга с температурой ~ 3900 К, излучение которой близко к излучению чёрного тела, а также различные газоразрядные лампы (импульсные и непрерывного горения). Для радиационного обогрева помещений применяют спирали из нихромовой проволоки, нагреваемые до температуры ~ 950 К. Для лучшей концентрации Инфракрасное излучение такие нагреватели снабжаются рефлекторами. В научных исследованиях, например, при получении спектров инфракрасного поглощения в разных областях спектра применяют специальные источники Инфракрасное излучение: ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых оптических квантовых генераторов - лазеров также лежит в инфракрасной области спектра; например, излучение лазера на неодимовом стекле имеет длину волны 1,06 мкм, лазера на смеси неона и гелия - 1,15 мкм и 3,39 мкм, лазера на углекислом газе - 10,6 мкм, полупроводникового лазера на InSb - 5 мкм и др.


Приёмники инфракрасного излучения основаны на преобразовании энергии Инфракрасное излучение в другие виды энергии, которые могут быть измерены обычными методами. Существуют тепловые и фотоэлектрические приёмники Инфракрасное излучение В первых поглощённое Инфракрасное излучение вызывает повышение температуры термочувствительного элемента приёмника, которое и регистрируется. В фотоэлектрических приёмниках поглощённое Инфракрасное излучение приводит к появлению или изменению электрического тока или напряжения. Фотоэлектрические приёмники, в отличие от тепловых, являются селективными приёмниками, т. е. чувствительными лишь в определённой области спектра. Специальные фотоплёнки и пластинки - инфрапластинки - также чувствительны к Инфракрасное излучение (до l = 1,2 мкм), и потому в Инфракрасное излучение могут быть получены фотографии.


Применение Инфракрасное излучение Инфракрасное излучение находит широкое применение в научных исследованиях, при решении большого числа практических задач, в военном деле и пр. Исследование спектров испускания и поглощения в инфракрасной области используется при изучении структуры электронной оболочки атомов, для определения структуры молекул, а также для качественного и количественного анализа смесей веществ сложного молекулярного состава, например моторного топлива (см. Инфракрасная спектроскопия).


  Благодаря различию коэффициентов рассеяния, отражения и пропускания тел в видимом и Инфракрасное излучение фотография, полученная в Инфракрасное излучение, обладает рядом особенностей по сравнению с обычной фотографией. Например, на инфракрасных снимках часто видны детали, невидимые на обычной фотографии (см. ст. Инфракрасная фотография ).


В промышленности Инфракрасное излучение применяется для сушки и нагрева материалов и изделий при их облучении (см. Инфракрасный нагрев), а также для обнаружения скрытых дефектов изделий (см. Дефектоскопия).


На основе фотокатодов, чувствительных к Инфракрасное излучение (для l < 1,3 мкм), созданы специальные приборы - электроннооптические преобразователи, в которых не видимое глазом инфракрасное изображение объекта на фотокатоде преобразуется в видимое. На этом принципе построены различные приборы ночного видения (бинокли, прицелы и др.), позволяющие при облучении наблюдаемых объектов Инфракрасное излучение от специальных источников вести наблюдение или прицеливание в полной темноте. Создание высокочувствительных приёмников Инфракрасное излучение позволило построить специальные приборы - теплопеленгаторы для обнаружения и пеленгации объектов, температура которых выше температуры окружающего фона (нагретые трубы кораблей, двигатели самолётов, выхлопные трубы танков и др.), по их собственному тепловому Инфракрасное излучение На принципе использования теплового излучения цели созданы также системы самонаведения на цель снарядов и ракет. Специальная оптическая система и приёмник Инфракрасное излучение, расположенные в головной части ракеты, принимают Инфракрасное излучение от цели, температура которой выше температуры окружающей среды (например, собственное Инфракрасное излучение самолётов, кораблей, заводов, тепловых электростанций), а автоматическое следящее устройство, связанное с рулями, направляет ракету точно в цель. Инфракрасные локаторы и дальномеры позволяют обнаруживать в темноте любые объекты и измерять расстояния до них.
Оптические квантовые генераторы, излучающие в инфракрасной области, используются также для наземной и космической связи.


Лит.: Леконт Ж., Инфракрасное излучение, пер. с франц., М., 1958; Дерибере М., Практические применения инфракрасных лучей, пер. с франц., М.-Л., 1959; Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, М., 1967; Соловьев С. М., Инфракрасная фотография, М., 1960; Лебедев П. Д., Сушка инфракрасными лучами, М.-Л., 1955.
  В. И. Малышев.


Рис. 1. Опыт В. Гершеля. Термометр, помещенный за красной частью солнечного спектра, показал повышенную температуру по сравнению с контрольными термометрами, расположенными сбоку.
Рис. 1. Опыт В. Гершеля. Термометр, помещенный за красной частью солнечного спектра, показал повышенную температуру по сравнению с контрольными термометрами, расположенными сбоку.

B при температуре 2450 К. Заштрихованная часть - излучение вольфрама в инфракрасной области; интервал 0,4-0,74 мкм - видимая область." href="/a_pictures/18/10/278624196.jpg">Рис. 3. Кривые излучения абсолютно чёрного тела A и вольфрама <a href=B при температуре 2450 К. Заштрихованная часть - излучение вольфрама в инфракрасной области; интервал 0,4-0,74 мкм - видимая область."http://tungsten.atomistry.com/">вольфрама B при температуре 2450 К. Заштрихованная часть - излучение вольфрама в инфракрасной области; интервал 0,4-0,74 мкм - видимая область." src="a_pictures/18/10/th_278624196.jpg">
Рис. 3. Кривые излучения абсолютно чёрного тела A и вольфрама B при температуре 2450 К. Заштрихованная часть - излучение вольфрама в инфракрасной области; интервал 0,4-0,74 мкм - видимая область.




"БСЭ" >> "И" >> "ИН" >> "ИНФ"

Статья про "Инфракрасное излучение" в Большой Советской Энциклопедии была прочитана 1074 раз
Коптим скумбрию в коробке
Яйца в кляре

TOP 20