БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Круговорот веществОпределение "Круговорот веществ" в Большой Советской Энциклопедии
С поверхности океана испаряется ежегодно огромное количество воды, но при этом нарушается её изотопный состав: она становится беднее тяжёлым водородом по сравнению с океанической водой (в результате фракционирования изотопов водорода при испарении). Между поверхностным слоем воды океана и массой воды более глубоких его зон существует свой регулярный, установившийся обмен. Между парами воды и водой атмосферы и водоёмов устанавливаются локальные временные равновесия. Пары воды в атмосфере конденсируются, захватывая газы атмосферы и вулканические газы, а затем вода обрушивается на сушу. Часть воды при этом входит в химические соединения, другая в виде кристаллогидратной, сорбированной и многих др. форм связывается рыхлыми осадками земной коры, погребается вместе с ними и надолго оставляет основной цикл. Осадки в процессе метаморфизации и погружения в глубь Земли под влиянием давления и высокой температуры (например, интрузии) теряют воду, которая поднимается по порам пород и появляется в виде горячих источников или пластовых вод на поверхности Земли, или, наконец, выбрасывается с парами при вулканической деятельности вместе с некоторым количеством ювенильных вод и газов. Другая же, основная масса воды, извлекая растворимые соединения из пород литосферы, разрушая их, стекает реками обратно в океан. В результате этого процесса солевой состав океана в геологическом времени изменяется. Химические элементы, образующие легкорастворимые соединения, накапливаются в морской воде. Труднорастворимые соединения химических элементов быстро достигают дна океана. Другой пример — круговорот кальция. Известняки (как и др. породы) на континенте разрушаются, и растворимые соли кальция (двууглекислые и др.) реками сносятся в море. Ежегодно в море сбрасывается с континента около 5·108 т кальция. В тёплых морях углекислый кальций интенсивно потребляется низшими организмами — фораминиферами, кораллами и др. — на постройку своих скелетов. После гибели этих организмов их скелеты из углекислого кальция образуют осадки на дне морей. Со временем происходит их метаморфизация, в результате чего формируется порода — известняк. При регрессии моря известняк обнажается, оказывается на суше и начинается процесс его разрушения. Но состав вновь образующегося известняка несколько иной. Так, оказалось, что палеозойские известняки более богаты углекислым магнием и сопровождаются доломитом, известняки же более молодые — беднее углекислым магнием, а образования пластов доломитов в современную эпоху почти не происходит. Наконец, при излиянии лавы известняки частично могут быть ею ассимилированы, т. е. войти в большой Круговорот веществ Т. о., отдельные циклические процессы, слагающие общий Круговорот веществ на Земле, никогда не являются полностью обратимыми. Часть вещества в повторяющихся процессах превращения рассеивается и отвлекается в частные круговороты или захватывается временными равновесиями, а другая часть, которая возвращается к прежнему состоянию, имеет уже новые признаки. Продолжительность того пли иного цикла можно условно оценить по тому времени, которое было бы необходимо, чтобы вся масса данного вещества могла обернуться один раз на Земле в том или ином процессе (см. табл. 1).
Табл. 1. — Время, достаточное для полного оборота вещества
В Круговорот веществ участвуют химические элементы и соединения, более сложные ассоциации вещества и организмы. Процессы изменения вещества могут носить преимущественно характер механического перемещения, физико-химического превращения, ещё более сложного биологического преобразования или носить смешанный характер. Круговорот веществ, как и отдельные циклические процессы на Земле, поддерживаются притекающей к ним энергией. Её основными источниками являются солнечная радиация, энергия положения (гравитационная) и радиогенное тепло Земли, когда-то имевшее исключительное значение в происходивших на Земле процессах. Энергия, возникшая при химических и др. реакциях, имеет второстепенное значение. Для отдельных частных круговоротов вещества можно оценить затраченную энергию; например, для ежегодного испарения масс воды с поверхности океана расходуется около 10,5·1023 дж (2,5·1023кал), или 10% от всей получаемой Землёй энергии Солнца. Классификация Круговорот веществ на Земле ещё не разработана. Можно говорить, например, о круговоротах отдельных химических элементов или о биологическом Круговорот веществ в биосфере; можно выделить круговорот газов атмосферы или воды, твёрдых веществ в литосфере и, наконец, Круговорот веществ в пределах 2—3 смежных геосфер. Изучением Круговорот веществ занимались многие русские учёные. В. И. Вернадский выделил геохимическую группу так называемых циклических химических элементов; к ним относят практически все широко распространённые и многие редкие химические элементы, например углерод, кислород, азот, фосфор, серу, кальций, хлор, медь, железо, йод. В. Р. Вильямс и многие др. рассматривали биологические циклы азота, углекислоты, фосфора и др. в связи с изучением плодородия почв. Из цикличности химических элементов особенно важную роль в биогенном цикле (см. Биогеохимия) играют углерод, азот, фосфор, сера.
Углерод — основной биогенный элемент; он играет важнейшую роль в образовании живого вещества биосферы. Углекислый газ из атмосферы в процессе фотосинтеза, осуществляемого зелёными растениями, ассимилируется и превращается в разнообразные и многочисленные органические соединения растений. Растительные организмы, особенно низшие микроорганизмы, морской фитопланктон, благодаря исключительной скорости размножения продуцируют в год около 1,5·1011 т углерода в виде органической массы, что соответствует 5,86·1020дж (1,4·1020кал) энергии. Растения частично поедаются животными (при этом образуются более или менее сложные пищевые цепи). В конечном счёте органическое вещество в результате дыхания организмов, разложения их трупов, процессов брожения, гниения и горения превращается в углекислый газ или отлагается в виде сапропеля, гумуса, торфа, которые, в свою очередь, дают начало многим др. каустобиолитам — каменным углям, нефти, горючим газам (рис. 2). В активном круговороте углерода участвует очень небольшая часть всей его массы (табл. 2). Огромное количество угольной кислоты законсервировано в виде ископаемых известняков и др. пород. Между углекислым газом атмосферы и водой океана, в свою очередь, существует подвижное равновесие.
Табл. 2. — Содержание углерода на поверхности Земли и в земной коре (16 км мощности)
Многие водные организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков. Из атмосферы было извлечено и захоронено в десятки тысяч раз больше углекислого газа, чем в ней находится в данный момент. Атмосфера пополняется углекислым газом благодаря процессам разложения органического вещества, карбонатов и др., а также, всё в большей мере, в результате индустриальной деятельности человека. Особенно мощным источником являются вулканы, газы которых состоят главным образом из углекислого газа и паров воды. Некоторая часть углекислого газа и воды, извергаемых вулканами, возрождается из осадочных пород, в частности известняков, при контакте магмы с ними и их ассимиляции магмой. В процессе круговорота углерода происходит неоднократное фракционирование его по изотопному составу (12C—13C), особенно в магматогенном процессе (образование CO2, алмазов, карбонатов), при биогенном образовании органического вещества (угля, нефти, тканей организмов и др.). Источником азота на Земле был вулканогенный NH3, окисленный O2 (процесс окисления азота сопровождается нарушением его изотопного состава — 14N—15N). Основная масса азота на поверхности Земли находится в виде газа (N2) в атмосфере. Известны два пути его вовлечения в биогенный круговорот (рис. 3): 1) процессы электрического (в тихом разряде) и фотохимического окисления азота воздуха, дающие разные окислы азота (NO2, NO"3 и др.), которые растворяются в дождевой воде и вносятся т. о. в почвы, воду океана; 2) биологическая фиксация N2 клубеньковыми бактериями, свободными азотфиксаторами и др. микроорганизмами (см. Азотфиксация). Первый путь даёт около 30 мг NO"3 на 1 м2 поверхности Земли в год, второй — около 100 мг NO"3 на 1 м2 в год. Значение азота в обмене веществ организмов общеизвестно. Он входит в состав белков и их разнообразных производных. Остатки организмов на поверхности Земли или погребённые в толще пород подвергаются разрушению при участии многочисленных микроорганизмов. В этих процессах органический азот подвергается различным превращениям. В результате процесса денитрификации при участии бактерий образуется элементарный азот, возвращающийся непосредственно в атмосферу. Так, например, наблюдаются подземные газовые струи, состоящие почти из чистого N2. Биогенный характер этих струй доказывается отсутствием в их составе аргона (40Ar), обычного в атмосфере. При разложении белков образуются также аммиак и его производные, попадающие затем в воздух и в воду океана. В биосфере в результате нитрификации — окисления аммиака и др. азотсодержащих органических соединений при участии бактерии Nitrosomonas и нитробактерий — образуются различные окислы азота (N2O, NO, N2O3 и N2O5). Азотная кислота с металлами даёт соли. Калийная селитра образуется на поверхности Земли в кислородной атмосфере в условиях жаркого и сухого климата в местах отложений остатков водорослей. Скопления селитры можно наблюдать в пустынях на дне ниш выдувания. В результате деятельности денитрифицирующих бактерий соли азотной кислоты могут восстанавливаться до азотистой кислоты и далее до свободного азота. Источник фосфора в биосфере — главным образом апатит, встречающийся во всех магматических породах. В превращениях фосфора (рис. 4) большую роль играет живое вещество. Организмы извлекают фосфор из почв, водных растворов. Фосфор входит в состав белков, нуклеиновых кислот, лецитинов, фитина и др. органических соединений; особенно много фосфора в костях животных. С гибелью организмов фосфор возвращается в почву и в донные отложения. Он концентрируется в виде морских фосфатных конкреций, отложений костей рыб, гуано, что создаёт условия для образования богатых фосфором пород, которые, в свою очередь, служат источниками фосфора в биогенном цикле. Круговорот серы также тесно связан с живым веществом. Сера в виде трёхокиси (SO3), двуокиси (SO2), сероводорода (H2S) и главным образом элементарной серы выбрасывается вулканами. Кроме того, в природе имеются в большом количестве различные сульфиды металлов: железа, свинца, цинка и др. Сульфидная сера окисляется в биосфере при участии многочисленных микроорганизмов до сульфатной серы (SO""4) почв и водоёмов. Сульфаты поглощаются растениями. В организмах сера входит в состав аминокислот и белков, а у растений, кроме того, — в состав эфирных масел и т. д. Процессы разрушения остатков организмов в почвах и в илах морей сопровождаются очень сложными превращениями серы. При разрушении белков с участием микроорганизмов образуется сероводород, который далее окисляется либо до элементарной серы, либо до сульфатов. В этом процессе участвуют разнообразные микроорганизмы, создающие многочисленные промежуточные соединения серы. Известны месторождения серы биогенного происхождения. Сероводород может вновь образовать «вторичные» сульфиды, а сульфатная сера — залежи гипса. В свою очередь, сульфиды и гипс вновь подвергаются разрушению, и сера возобновляет свою миграцию. В целом всё вещество литосферы интенсивно подвергается превращениям, участвуя в так называемом малом и большом Круговорот веществ Под влиянием лучей Солнца, кислорода, углекислого газа, воды, живого вещества происходит разрушение вещества поверхности Земли. Продукты разрушения уносятся ветром или, будучи растворены в воде, сбрасываются в моря и океаны, где они осаждаются, откладываются на дне, уплотняются, цементируются, образуют слоистые осадочные породы, а затем под влиянием давления превращаются в кристаллические сланцы. Так, ежегодно выносится реками около 2,7·109 т вещества. Этот Круговорот веществ на Земле называют малым (см. рис. 5). В большом Круговорот веществ участвуют кристаллические сланцы и др. породы, образующиеся в процессе малого Круговорот веществ В результате дальнейшего погружения они попадают в магматическую область Земли, подвергаются действию давления и высокой температуры, переплавляются и в виде изверженных магматических пород могут быть вновь вынесены на поверхность Земли. Изучение Круговорот веществ на Земле имеет не только познавательное значение, но и представляет глубокий практический интерес. Воздействие человека на природные процессы становится всё значительнее. Последствия этого воздействия стали сравнимы с результатами геологических процессов: в биосфере возникают новые пути миграции веществ и энергии, появляются многие тысячи химических соединений, прежде ей не свойственных. Создаются новые водные бассейны; тем самым меняется круговорот воды. В руках человека концентрируются огромные запасы металлов, фосфатов, серы, синтезируются колоссальные количества азотсодержащих веществ для удобрения полей и т. д. Меняется обычный ход геохимических процессов. Глубокое изучение всех природных превращений веществ на Земле — необходимое условие рационального воздействия человека на среду его обитания и изменения природных условий в желаемом для него направлении (см. Охрана природы, Природопользование).
Лит.: Вернадский В. И., Очерки геохимии, 4 изд., М.— Свердловск, 1934; Ферсман А. Е., Геохимия, т. 1—4, Л., 1933—39; Виноградов А. П., Геохимия редких и рассеянных химических элементов в почвах, М., 1950; его же. Введение в геохимию океана, М., 1967; Вильямс В. Р., Собр. соч., т. 6, М., 1951; Borchert H., Zur Geochemie des Kohlenstoffs, «Geochimica et Cosmochimica acta», 1951, v. 2, № 1; Rankama К., Sanama Th. G., Geochemistry, Chi., 1950.
Статья про "Круговорот веществ" в Большой Советской Энциклопедии была прочитана 831 раз |
TOP 20
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||