Линейного интерполирования метод

Определение "Линейного интерполирования метод" в Большой Советской Энциклопедии


Линейного интерполирования метод. Рис.
Линейного интерполирования метод, один из методов приближённого вычисления корней уравнения (трансцендентного или алгебраического) f(x) = 0. Сущность Линейного интерполирования метод заключается в следующем. Исходя из двух близких к корню а значений x0 и x1, в которых функция f(x) принимает значения разных знаков, берут в качестве следующего приближённого значения x2 корня a точку пересечения с осью абсцисс прямой, проходящей через точки (x0, f(x0)) и (x1, f(x1)) (см. рис.). Повторяя эту процедуру на более узком интервале [х0, x2], находят следующее приближение x3 и т. д. Общая формула Линейного интерполирования метод имеет вид
, (n = 2, 3, ...).
Др. названия Линейного интерполирования метод: метод хорд, метод секущих и (устаревшее) правило ложного положения (Regula faisi).
Лит.: Березин И. С.. Жидков Н. П., Методы вычислений, 2 изд., т. 2, М., 1962.




"БСЭ" >> "Л" >> "ЛИ" >> "ЛИН" >> "ЛИНЕ"

Статья про "Линейного интерполирования метод" в Большой Советской Энциклопедии была прочитана 275 раз
Бургер двойного помола
Кетчуп из бананов

TOP 20