БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ
Навигация:

Библиотека DJVU
Photogallery

БСЭ

Статистика:


Лоренца - Максвелла уравнения

Значение слова "Лоренца - Максвелла уравнения" в Большой Советской Энциклопедии


Лоренца — Максвелла уравнения, Лоренца уравнения, фундаментальные уравнения классической электродинамики, определяющие микроскопические
электромагнитные поля, создаваемые отдельными заряженными частицами. Л. — М. у. лежат в основе электронной теории (микроскопической электродинамики), построенной Х. А. Лоренцом в конце 19 — начале 20 вв. В этой теории вещество (среда) рассматривается как совокупность электрически заряженных частиц (электронов и атомных ядер), движущихся в вакууме.

  В Л. — М. у. электромагнитное поле описывается двумя векторами: напряжённостями микроскопических полей — электрического е и магнитного h. Все электрические токи в электронной теории — чисто конвекционные, т. е. обусловлены движением заряженных частиц. Плотность тока j = ru, где r — плотность заряда, а u — его скорость.

  Л. — М. у. были получены в результате обобщения макроскопических Максвелла уравнений. В дифференциальной форме в абсолютной системе единиц Гаусса они имеют вид:

  rot h = ,

  rot е = ,                (1)

  div h = 0

  div е = 4pr

(с — скорость света в вакууме).

  Согласно электронной теории, уравнения (1) точно описывают поля в любой точке пространства (в том числе межатомные и внутриатомные поля и даже поля внутри электрона) в любой момент времени. В вакууме они совпадают с уравнениями Максвелла.

  Микроскопические напряжённости полей е и h очень быстро меняются в пространстве и времени и непосредственно не приспособлены для описания электромагнитных процессов в системах, содержащих большое число заряженных частиц (то есть в макроскопических материальных телах). А именно такие макроскопические процессы представляют интерес, например, для электротехники и радиотехники. Так, при токе в 1 а через поперечное сечение проводника в 1 сек проходит около 1019 электронов. Проследить за движением всех этих частиц и вычислить создаваемые ими поля невозможно. Поэтому прибегают к статистическим методам, которые позволяют на основе определённых модельных представлений о строении вещества установить связь между средними значениями напряжённостей электрических и магнитных полей и усреднёнными значениями плотностей заряда и тока.

  Усреднение микроскопических величин производится по пространственным и временным интервалам, большим по сравнению с микроскопическими интервалами (порядка размеров атомов и времени обращения электронов вокруг ядра), но малым по сравнению с интервалами, на которых макроскопические характеристики электромагнитного поля заметно изменяются (например, по сравнению с длиной электромагнитной волны и её периодом). Подобные интервалы называются «физически бесконечно малыми».

  Усреднение Л. — М. у. приводит к уравнениям Максвелла. При этом оказывается, что среднее значение напряжённости микроскопического электрического поля  равно напряжённости поля в теории Максвелла: = Е, а среднее значение напряжённости микроскопического магнитного поля  — вектору магнитной индукции:  = В.

  В теории Лоренца все заряды разделяются на свободные и связанные (входящие в состав электрически нейтральных атомов и молекул). Можно показать, что плотность связанных зарядов определяется вектором поляризации Р (электрическим дипольным моментом единицы объёма среды):

  rсвяз. = - div Р  (2)

  а плотность тока связанных зарядов, кроме вектора поляризации, зависит также от намагниченности  I (магнитного момента единицы объёма среды):

  jсвяз. = rot I. (3)

  Векторы Р и I характеризуют электромагнитное состояние среды. Вводя два вспомогательных вектора — вектор электрической индукции

  D = E + 4pP (4)

  и вектор напряжённости магнитного поля

  H = B - 4pI (5)

  получают макроскопические уравнения Максвелла для электромагнитного поля в веществе в обычной форме.

  Помимо уравнений (1) для микроскопических полей, к основным уравнениям электронной теории следует добавить выражение для силы, действующей на заряженные частицы в электромагнитном поле. Объёмная плотность этой силы (силы Лоренца) равна:

   (6)

  Усреднённое значение лоренцовых сил, действующих на составляющие тело заряженные частицы, определяет макроскопическую силу, которая действует на тело в электромагнитном поле.

  Электронная теория Лоренца позволила выяснить физический смысл основных постоянных, входящих в уравнения Максвелла и характеризующих электрические и магнитные свойства вещества. На её основе были предсказаны или объяснены некоторые важные электрические и оптические явления (нормальный Зеемана эффект, дисперсия света, свойства металлов и другие).

  Законы классической электронной теории перестают выполняться на очень малых пространственно-временных интервалах. В этом случае справедливы законы квантовой теории электромагнитных процессов — квантовой электродинамики. Основой для квантового обобщения теории электромагнитных процессов являются Л. — М. у.

 

  Лит.: Лорентц Г. А., Теория электронов и ее применение к явлениям света и теплового излучения, пер. с английского, 2 издание, М., 1953; Беккер Р., Электронная теория, перевод с немецкого, Л. — М., 1936; Ландау Л. Д. и Лифшиц Е. М., Теория поля, М., 1967 (Теоретическая физика, том 2).

  Г. Я. Мякишев.

В Большой Советской Энциклопедии рядом со словом "Лоренца - Максвелла уравнения"

Армированное стекло | Буква "Л" | В начало | Буквосочетание "ЛО" | Лоренцетти


Статья про слово "Лоренца - Максвелла уравнения" в Большой Советской Энциклопедии была прочитана 2274 раз


Интересное