БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ
Навигация:

Библиотека DJVU
Photogallery

БСЭ

Статистика:


Люминесцентная камера

Значение слова "Люминесцентная камера" в Большой Советской Энциклопедии


Люминесцентная камера, сцинтилляционная камера, прибор для наблюдения и регистрации траектории (следов, треков) ионизирующих частиц, основанный на свойстве люминофоров
Рис. 1 а, б, в, г. Схематические изображения люминесцентных камер: 1 - люминесцентный кристалл; 2 - след частицы; 3 - светосильный объектив; ЭОП - электронно-оптический преобразователь; 4 - его фотокатод; 5 - его выходной люминесцентный экран; 6 - фотоаппарат; 7 - передающая телевизионная трубка; 8 - телевизор; 9 - магнитофон; 10 - электронная вычислительная машина.
(сцинтилляторов) светиться при прохождении через них быстрых заряженных частиц. Заряженная частица теряет в веществе энергию, ионизуя и возбуждая атомы и молекулы, находящиеся вблизи её траектории. В сцинтилляторах часть энергии, потерянная частицей, преобразуется в энергию световой вспышки, которую можно регистрировать с помощью фотоэлектронных умножителей, а в некоторых случаях - ощущать хорошо адаптированным глазом (см. Сцинтилляция, Люминесценция, Спинтарископ).

  Длительность свечения следа определяется свойствами люминофора и составляет обычно от 10-4 до 10-7 сек в неорганических и до 10-9 сек в органических сцинтилляторах. С каждого см длины следа ионизирующей частицы даже в лучших сцинтилляторах испускается не более 105-107 световых квантов (фотонов). Поэтому след не может быть непосредственно сфотографирован.

  Впервые Люминесцентная камера была создана в 1952 советским физиком Е. К. Завойским с сотрудниками. Основными её элементами являются: сцинтиллятор, в котором образуются следы ионизирующих частиц, и высокочувствительное электронно-оптическое устройство, позволяющее в достаточной степени усилить яркость изображения следов для их наблюдения неадаптированным глазом, а также для их фотографирования или телевизионной передачи (см. Электронно-оптический преобразователь).

  Схема одного из вариантов Люминесцентная камера, в которой сцинтиллятором служат кристаллы йодистого цезия CsI или антрацена 1, а усилителем яркости изображения - многокаскадный электронно-оптический преобразователь (ЭОП), показана на рис. 1, а. Объектив 3 проектирует изображение следа 2 частицы в кристалле на фотокатод 4 многокаскадного электронно-оптического преобразователя. Изображение, усиленное ЭОП по яркости в 105-106 раз, появляется на выходном люминесцентном экране 5 преобразователя и может быть сфотографировано фотоаппаратом 6. На рис. 1, б показан другой вариант Люминесцентная камера, где изображение следа, усиленное с помощью преобразователя, не фотографируется непосредственно, а сначала преобразуется с помощью передающей телевизионной трубки 7 в видеосигнал. В результате изображение может быть воспроизведено на экране телевизора 8, находящегося в удалённом помещении, записано с помощью магнитофона 9 или введено для обработки в быстродействующую ЭВМ 10. Контрастность и яркость изображения могут регулироваться радиотехническими средствами. В некоторых Люминесцентная камера применяется волоконная оптика: свет распространяется от следа до фотокатода электронно-оптического преобразователя за счёт полного внутреннего отражения от стенок многочисленных тонких трубочек, наполненных жидким сцинтиллятором, или тонких нитей из сцинтиллирующей пластмассы 1, совокупность которых и составляет рабочий объём Люминесцентная камера (рис. 1, в, г). Это даёт выигрыш в эффективности собирания света в десятки или даже сотни раз по сравнению с использованием самых светосильных объективов. Однако при этом ухудшается пространственное разрешение и чёткость изображения следов.

  Следы ионизирующих частиц в Люминесцентная камера (рис. 2) во многом аналогичны следам в толстослойных ядерных фотографических эмульсиях, Вильсона камере, диффузионной камере, искровой камере, пузырьковой камере (трековые детекторы). Ширина светящихся следов a-частиц не превышает несколько мкм. Многочисленные разрывы объясняются квантовыми флуктуациями, заметно проявляющимися из-за малости полного числа фотонов, приходящих от следа на фотокатод преобразователя. Каждая светлая точка на фотографиях следов протонов (рис. 2, б) и релятивистских мезонов (рис. 2, а) образована одиночным световым квантом люминесценции, вырвавшим фотоэлектрон с фотокатода (рис. 1). Плотность таких точек на следах прямо пропорциональна величине потерь энергии частиц в веществе. Преимуществом Люминесцентная камера перед другими трековыми детекторами является высокое временное разрешение, ограниченное только величиной времени высвечивания сцинтиллятора, так как объектив и электронно-оптический преобразователь принципиально могут обеспечить временное разрешение ~10-13-10-14 сек. Для отбора представляющих интерес ядерных явлений запуск Люминесцентная камера производится от системы сцинтилляционных или других детекторов частиц, включенных в схемы совпадений или антисовпадений и позволяющих установить факт попадания в объём Люминесцентная камера той или иной частицы, её остановки, вылета и т.п. Это позволяет исследовать редкие и сложные явления, в которых важно знать взаимное расположение траекторий отдельных частиц.

  Быстрые нейтроны регистрируются обычно по протонам отдачи, возникающим при столкновении нейтронов с водородными атомами, входящими в состав сцинтиллятора, медленные нейтроны (тепловые) - по заряженным частицам, образующимся в результате ядерных реакций, возбуждаемых нейтронами. Люминесцентная камера чувствительна также и к электромагнитному излучению: рентгеновские и g-kванты образуют в её рабочем объёме электроны большой энергии, благодаря фотоэффекту, эффекту Комптона и образованию пар (см. Гамма- излучение).

  Люминесцентная камера может использоваться также как высокочувствительный и безынерционный детектор в авторадиографии, дефектоскопии, рентгеноскопии.

 

  Лит.: 3авойский Е. К. [и др.], Люминесцентная камера, «ДАН СССР», 1955, т. 100, № 2, с. 241; их же, О люминесцентной камере, «Атомная энергия», 1956, № 4, с. 34; 3авойский Е. К. и Смолкни Г. Е., О межмолекулярном переносе энергии возбуждения в кристаллах, «ДАН СССР», 1956, т. 111, № 2, с. 328; Демидов Б. А., Фанченко С. Д., Наблюдение релятивистских заряженных частиц в люминесцентной камере, «Журнал экспериментальной и теоретической физики», 1960, т. 39, в. 1(7), с. 64; Принципы и методы регистрации элементарных частиц, под ред. Л. К. Л. Юан и Ву Цзян-сюн, перевод с английского, М., 1963.

  С. Д. Фанченко.

CsI и NaI, полученные с помощью люминесцентной камеры, изображенной на рис. 1, а: а - следы a-частиц, испускаемых 210Po, с энергией 5,2 Мэв, полученные при замене объектива 3 микроскопом; б - следы протонов с энергией 200 Мэв; в - следы релятивистских мезонов; г - следы протонов с энергией 100 Мэв; д - двухлучевая «звезда», образованная космической частицей в кристалле NaI." href="a_pictures/18/10/299459870.jpg">Рис. 2. Фотографии треков a-частиц, p-мезонов и протонов в <a href=кристаллах CsI и NaI, полученные с помощью люминесцентной камеры, изображенной на рис. 1, а: а - следы a-частиц, испускаемых 210Po, с энергией 5,2 Мэв, полученные при замене объектива 3 микроскопом; б - следы протонов с энергией 200 Мэв; в - следы релятивистских мезонов; г - следы протонов с энергией 100 Мэв; д - двухлучевая «звезда», образованная космической частицей в кристалле NaI." title="Рис. 2. Фотографии треков a-частиц, p-мезонов и протонов в кристаллах CsI и NaI, полученные с помощью люминесцентной камеры, изображенной на рис. 1, а: а - следы a-частиц, испускаемых 210Po, с энергией 5,2 Мэв, полученные при замене объектива 3 микроскопом; б - следы протонов с энергией 200 Мэв; в - следы релятивистских мезонов; г - следы протонов с энергией 100 Мэв; д - двухлучевая «звезда», образованная космической частицей в кристалле NaI." src="a_pictures/18/10/th_299459870.jpg">
Рис. 2. Фотографии треков a-частиц, p-мезонов и протонов в кристаллах CsI и NaI, полученные с помощью люминесцентной камеры, изображенной на рис. 1, а: а - следы a-частиц, испускаемых 210Po, с энергией 5,2 Мэв, полученные при замене объектива 3 микроскопом; б - следы протонов с энергией 200 Мэв; в - следы релятивистских мезонов; г - следы протонов с энергией 100 Мэв; д - двухлучевая «звезда», образованная космической частицей в кристалле NaI.

Рис. 1 а, б, в, г. Схематические изображения люминесцентных камер: 1 - люминесцентный кристалл; 2 - след частицы; 3 - светосильный объектив; ЭОП - электронно-оптический преобразователь; 4 - его фотокатод; 5 - его выходной люминесцентный экран; 6 - фотоаппарат; 7 - передающая телевизионная трубка; 8 - телевизор; 9 - магнитофон; 10 - электронная вычислительная машина.
Рис. 1 а, б, в, г. Схематические изображения люминесцентных камер: 1 - люминесцентный кристалл; 2 - след частицы; 3 - светосильный объектив; ЭОП - электронно-оптический преобразователь; 4 - его фотокатод; 5 - его выходной люминесцентный экран; 6 - фотоаппарат; 7 - передающая телевизионная трубка; 8 - телевизор; 9 - магнитофон; 10 - электронная вычислительная машина.


В Большой Советской Энциклопедии рядом со словом "Люминесцентная камера"

Люминесцентная дефектоскопия | Буква "Л" | В начало | Буквосочетание "ЛЮ" | Люминесцентная киносъёмка


Статья про слово "Люминесцентная камера" в Большой Советской Энциклопедии была прочитана 1813 раз


Интересное