БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Рентгеновская камераОпределение "Рентгеновская камера" в Большой Советской Энциклопедии
Кассета Рентгеновская камера служит для придания фотоплёнке необходимой формы и для её светозащиты. Наиболее распространённые кассеты — плоские и цилиндрические (обычно соосные с осью вращения образца; для фокусирующих методов образец помещают на поверхности цилиндра). В других Рентгеновская камера (например, в рентгеновских гониометрах, в Рентгеновская камера для рентгеновской топографии) кассета перемещается или вращается синхронно с движением образца. В некоторых Рентгеновская камера (интегрирующих) кассета, кроме того, смещается при каждом цикле рентгенографирования на малую величину. Это приводит к размазыванию дифракционного максимума на фотоплёнке, усреднению регистрируемой интенсивности излучения и повышает точность её измерения. Движение образца и кассеты используют с различной целью. При вращении поликристаллов увеличивается число кристаллитов, попадающих в отражающее положение — дифракционная линия на рентгенограмме получается равномерно почернённой. Движение монокристалла позволяет вывести в отражающее положение различные кристаллографические плоскости. В топографических методах движение образца позволяет расширить область его исследования. В Рентгеновская камера, где кассета перемещается синхронно с образцом, механизм её перемещения соединён с механизмом движения образца. Рентгеновская камера позволяет изучать структуру вещества как в нормальных условиях, так и при высоких и низких температурах, в глубоком вакууме, атмосфере специального состава, при механических деформациях и напряжениях и т.д. Держатель образца может иметь приспособления для создания необходимых температур, вакуума, давления, измерительные приборы и защиту узлов камеры от нежелательных воздействий. Рентгеновская камера для исследования поликристаллов и монокристаллов существенно различны. Для исследования поликристаллов можно использовать параллельный первичный пучок (дебаевские Рентгеновская камера; рис. 2, а; см. также Дебая — Шеррера метод) и расходящийся (фокусирующие Рентгеновская камера; рис. 2, б и в). Фокусирующие Рентгеновская камера обладают большой экспрессностью измерений, но рентгенограммы, получаемые на них, регистрируют лишь ограниченную область углов дифракции. В этих Рентгеновская камера в качестве источника первичного излучения может служить радиоактивный изотопный источник (см. Рентгеновские лучи) Рентгеновская камера для исследования монокристаллов конструктивно различны в зависимости от их назначения. Существуют камеры для ориентировки кристалла, т. е. определения направления его кристаллографических осей (рис. 3, а, см. также ст. Лауэграмма); Рентгеновская камера вращения-колебания для измерения параметров кристаллической решётки (по измерению угла дифракции отдельных отражений или положению слоевых линий) и для определения типа элементарной ячейки (рис. 3, б и в); Рентгеновская камера для раздельной регистрации дифракционных максимумов (развёртки слоевых линий), называются рентгеновскими гониометрами с фоторегистрацией; топографические Рентгеновская камера для исследования нарушений кристаллической решётки в почти совершенных кристаллах. Рентгеновская камера для монокристаллов часто снабжены системой отражательного гониометра для измерений и начальной установки огранённых кристаллов.
Для исследования аморфных и стеклообразных тел, а также растворов используют Рентгеновская камера, регистрирующие рассеяние под малыми углами дифракции (порядка нескольких угловых секунд) вблизи первичного пучка; коллиматоры таких камер должны обеспечить нерасходимость первичного пучка, чтобы можно было выделить излучение, рассеянное исследуемым объектом под малыми углами. Для этого используют сходимость пучка, протяжённые идеальные кристаллографические плоскости, создают вакуум и т.д. Рентгеновская камера для изучения объектов микронных размеров применяют с острофокусными рентгеновскими трубками; в этом случае расстояние образец — фотоплёнка можно значительно уменьшить (микрокамеры).
Лит.: Уманский М. М., Аппаратура рентгеноструктурных исследований, М., 1960; Гинье А., Рентгенография кристаллов, пер. с франц., М., 1961; Финкель В. А., Высокотемпературная рентгенография металлов, М., 1968; его же. Низкотемпературная рентгенография металлов, М., 1971.
F — фокус рентгеновской трубки; М — кристалл-монохроматор; К — кассета с фотоплёнкой Ф; Л — ловушка, перехватывающая неиспользованный рентгеновский пучок; ФО — окружность фокусировки (окружность, по которой располагаются дифракционные максимумы); КЛ — коллиматор; МЦ — механизм центрировки образца." href="/a_pictures/18/10/215577975.jpg">F — фокус рентгеновской трубки; М — кристалл-монохроматор; К — кассета с фотоплёнкой Ф; Л — ловушка, перехватывающая неиспользованный рентгеновский пучок; ФО — окружность фокусировки (окружность, по которой располагаются дифракционные максимумы); КЛ — коллиматор; МЦ — механизм центрировки образца."http://fluorine.atomistry.com/">F — фокус рентгеновской трубки; М — кристалл-монохроматор; К — кассета с фотоплёнкой Ф; Л — ловушка, перехватывающая неиспользованный рентгеновский пучок; ФО — окружность фокусировки (окружность, по которой располагаются дифракционные максимумы); КЛ — коллиматор; МЦ — механизм центрировки образца." src="a_pictures/18/10/th_215577975.jpg">
Статья про "Рентгеновская камера" в Большой Советской Энциклопедии была прочитана 629 раз |
TOP 20
|
|||||||||||||