Симпсона формула

Определение "Симпсона формула" в Большой Советской Энциклопедии

Симпсона формула, формула для приближённого вычисления определённых интегралов, имеющая вид:
,



где h = (b - а)/2n; fi, = f (a + ih), i = 0, 1, 2,..., 2n. Симпсона формула называют иногда формулой парабол, т. к. вывод этой формулы основан на замене подынтегральной функции f (x) на каждом из отрезков [a + 2hk, а + 2h (k + 1)], k = 0, 1,..., n - 1, соответствующим интерполяционным многочленом второй степени (см. Интерполяционные формулы); геометрически это означает, что кривая, описываемая уравнением у = f (x), заменяется близкой к ней кривой, состоящей из отрезков парабол. Погрешность, возникающая в результате применения Симпсона формула, равна
,


где а £ x £ b. Если подынтегральная функция f (x) - многочлен степени m £ 3, то Симпсона формула является не приближённой, а точной, так как в этом случае f IV (x) º 0.


Симпсона формула названа по имени Т. Симпсона, получившего её в 1743, хотя эта формула была известна ранее, например Дж. Грегори (1668).
О других формулах для приближённого вычисления определённых интегралов см. в ст. Приближённое интегрирование.



"БСЭ" >> "С" >> "СИ" >> "СИМ" >> "СИМП"

Статья про "Симпсона формула" в Большой Советской Энциклопедии была прочитана 6 раз
Коптим скумбрию в коробке
Бургер двойного помола

TOP 20