Стокса проблема

Определение "Стокса проблема" в Большой Советской Энциклопедии


Стокса проблема, задача об определении внешнего гравитационного поля планеты по её внешней уровенной поверхности S, массе внутри S и угловой скорости вращения около некоторой оси. Дж. Г. Стокс доказал разрешимость этой задачи и дал приближённое решение для сжатого сфероида с относительной ошибкой порядка квадрата его сжатия как первой краевой задачи теории потенциала. Точное решение Стокса проблема для эллипсоида получено итальянским учёным П. Пиццетти и М. С. Молоденским. Произвольной форме S соответствуют краевое условие

  и уравнение относительно j:

При условии


  где x — высота S над отсчётным эллипсоидом S0, содержащим заданную массу; возмущающий потенциал


j плотность простого слоя на S, W0 — потенциал силы тяжести в начале счёта x на пересечении S и S0, U0 — то же на S0, gсила. тяжести в поле эллипсоида, r — расстояние между элементом ds и точкой на S с высотой x, r0 — то же между ds и точкой, являющейся началом счёта x. Оси вращения S и S0 совпадают. Уравнение для j можно заменить системой линейных алгебраических уравнений. Определение j решает задачу, именуемую Стокса проблема Изложенное решение пригодно и в том случае, когда S — неуровенная и t, —  высота квазигеоида (см. Геоид).
 



  Лит.: Молоденскиqй М. С., Еремеев В. Ф., Юркина М. И., Методы изучения внешнего гравитационного поля и фигуры Земли, М., 1960 (Тр. Центр, н.-и. института геодезии, аэросъемки и картографии, в. 131): Stokes G. G., On attractions and on Clairaut"s theorem, «Cambridge and Dublin mathematical journal», 1849, v. 4.
  М. И. Юркина.



"БСЭ" >> "С" >> "СТ" >> "СТО" >> "СТОК"

Статья про "Стокса проблема" в Большой Советской Энциклопедии была прочитана 200 раз
Коптим скумбрию в коробке
Коптим скумбрию дома в коробке

TOP 20