Существенно особая точка

Определение "Существенно особая точка" в Большой Советской Энциклопедии


Существенно особая точка аналитической функции, точка z0 комплексной плоскости, в которой не существует ни конечного, ни бесконечного предела при z ® z0 для функции, однозначной и аналитической в некоторой окрестности этой точки (см. Аналитические функции). Примеры: точка z = 0 является Существенно особая точка для функции , ,  и т. д. В окрестности Существенно особая точка z0 функция f (z) может быть разложена в Лорана ряд
,


причём среди чисел b1, b2,... бесконечно много отличных от нуля. Это свойство часто используется для определения Существенно особая точка О поведении функции в окрестности Существенно особая точка позволяет судить Сохоцкого-Вейерштрасса теорема. Обобщением этой теоремы служит большая теорема Пикара: во всякой окрестности Существенно особая точка аналитическая функция принимает любое комплексное значение, кроме, быть может, одного. Последняя теорема, в свою очередь, имеет ряд обобщений и уточнений. В некоторых отделах теории аналитических функций под Существенно особая точка понимают также особые точки более сложной природы.
Лит.: Маркушевич А. И., Теория. аналитических функций, 2 изд., т. 1-2, М., 1967-68; Неванлинна Р., Однозначные аналитические функции, пер. с нем., М.- Л., 1941.




"БСЭ" >> "С" >> "СУ" >> "СУЩ"

Статья про "Существенно особая точка" в Большой Советской Энциклопедии была прочитана 501 раз
Бургер двойного помола
Крабы в кокосовом молоке

TOP 20