БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Бета-распадОпределение "Бета-распад" в Большой Советской Энциклопедии
где — символ ядра, состоящего из Z протонов и А—Z нейтронов. Простейшим примером (b--распада является превращение свободного нейтрона в протон с испусканием электрона и антинейтрино (период полураспада нейтрона » 13 мин): Более сложный пример (b--распада — распад тяжёлого изотопа водорода — трития, состоящего из двух нейтронов (n) и одного протона (p):
Примером b+-распада может служить распад изотопа углерода 11С по следующей схеме: Этот процесс можно представить как распад связанного протона В этом случае ядро углерода превращается в ядро предшествующего ему в периодической таблице элемента — бора.
Превращение протона в нейтрон внутри ядра может происходить и в результате захвата протоном одного из электронов с электронной оболочки атома. Чаще всего происходит захват электрона с ближайшей к ядру К-оболочки, т. н. К-захват. При К-захвате, как и при b+-распаде, образуется изобар, стоящий в периодической системе элементов слева от исходного ядра. Уравнение К-захвата имеет вид:
После захвата К-электрона на освободившееся место переходят электроны с более высоких оболочек; при этом испускается фотон. Т. о., К-захват сопровождается испусканием характеристического рентгеновского излучения. Примером К-захвата может служить реакция, при которой ядро изотопа бериллия захватывает К-электрон и превращается в ядро лития:
Бета-распад-р. наблюдается как у естественно-радиоактивных, так и у искусственно-радиоактивных изотопов. Для того чтобы ядро было неустойчиво по отношению к одному из типов b-превращения (т. е. могло испытать Бета-распад-р.), сумма масс частиц в левой части уравнения реакции должна быть больше суммы масс продуктов превращения. Поэтому при Бета-распад-р. происходит выделение энергии. Энергию Бета-распад-р. Еb можно вычислить по этой разности масс, пользуясь соотношением Е = mc2, где с — скорость света в вакууме. В случае b-распада
Энергия Бета-распад-р. распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из лёгких частиц может уносить практически любую энергию от 0 до Eb т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию. Исследование Бета-распад-р. ядер неоднократно ставило учёных перед неожиданными загадками. После открытия радиоактивности явление Бета-распад-р. долгое время рассматривалось как аргумент в пользу наличия в атомных ядрах электронов; это предположение оказалось в явном противоречии с квантовой механикой (см. Ядро атомное). Затем непостоянство энергии электронов, вылетающих при Бета-распад-р., даже породило у некоторых физиков неверие в закон сохранения энергии, т.к. было известно, что в этом превращении участвуют ядра, находящиеся в состояниях с вполне определённой энергией. Максимальная энергия вылетающих из ядра электронов как раз равна разности энергий начального и конечного ядер. Но в таком случае было непонятно, куда исчезает энергия, если вылетающие электроны несут меньшую энергию. Предположение немецкого учёного В. Паули о существовании новой частицы — нейтрино — спасло не только закон сохранения энергии, но и другой важнейший закон физики — закон сохранения момента количества движения. Поскольку спины (т. е. собственные моменты) нейтрона и протона равны 1/2, то для сохранения спина в правой части уравнений Бета-распад-р. может находиться лишь нечётное число частиц со спином 1/2. В частности, при b--распаде свободного нейтрона n ® p + e- + n только появление антинейтрино исключает нарушение закона сохранения момента количества движения.
Бета-распад-р. имеет место у элементов всех частей периодической системы. Тенденция к b-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению с тем количеством, которое отвечает максимальной устойчивости. Т. о., тенденция к b+-распаду или К-захвату характерна для нейтронодефицитных изотопов, а тенденция к b--распаду — для нейтроноизбыточных изотопов. Известно около 1500 b-радиоактивных изотопов всех элементов периодической системы, кроме самых тяжёлых (Z ³ 102). периоды полураспада заключены в широком интервале от 1,3 · 10-2 сек (12N) до ~ 2 1013 лет (природный радиоактивный изотоп 180W). В дальнейшем изучение Бета-распад-р. неоднократно приводило физиков к крушению старых представлений. Было установлено, что Бета-распад-р. управляют силы совершенно новой природы. Несмотря на длительный период, прошедший со времени открытия Бета-распад-р., природа взаимодействия, обусловливающего Бета-распад-р., исследована далеко не полностью. Это взаимодействие назвали «слабым», т.к. оно в 1012 раз слабее ядерного и в 109 раз слабее электромагнитного (оно превосходит лишь гравитационное взаимодействие; см. Слабые взаимодействия). Слабое взаимодействие присуще всем элементарным частицам (кроме фотона). Прошло почти полвека, прежде чем физики обнаружили, что в Бета-распад-р. может нарушаться симметрия между «правым» и «левым». Это несохранение пространственной чётности было приписано свойствам слабых взаимодействий. Изучение Бета-распад-р. имело и ещё одну важную сторону. Время жизни ядра относительно Бета-распад-р. и форма спектра b-частиц зависят от тех состояний, в которых находятся внутри ядра исходный нуклон и нуклон-продукт. Поэтому изучение Бета-распад-р., помимо информации о природе и свойствах слабых взаимодействий, значительно пополнило представления о структуре атомных ядер. Вероятность Бета-распад-р. существенно зависит от того, насколько близки друг к другу состояния нуклонов в начальном и конечном ядрах. Если состояние нуклона не меняется (нуклон как бы остаётся на прежнем месте), то вероятность максимальна и соответствующий переход начального состояния в конечное называется разрешённым. Такие переходы характерны для Бета-распад-р. лёгких ядер. Лёгкие ядра содержат почти одинаковое число нейтронов и протонов. У более тяжёлых ядер число нейтронов больше числа протонов. Состояния нуклонов разного сорта существенно отличны между собой. Это затрудняет Бета-распад-р.; появляются переходы, при которых Бета-распад-р. происходит с малой вероятностью. Переход затрудняется также из-за необходимости изменения спина ядра. Такие переходы называются запрещёнными. Характер перехода сказывается и на форме энергетического спектра b-частиц.
Экспериментальное исследование энергетического распределения электронов, испускаемых b-радиоактивными ядрами (бета-спектра), производится с помощью бета-спектрометров. Примеры b-спектров приведены на рис. 1 и рис. 2.
Статья про "Бета-распад" в Большой Советской Энциклопедии была прочитана 1023 раз |
TOP 20
|
|||||||||||