Воздух

Определение "Воздух" в Большой Советской Энциклопедии


Воздух, естественная смесь газов, главным образом азота и кислорода, составляющая земную атмосферу. Под действием Воздух и воды совершаются важнейшие геологические процессы на поверхности Земли, формируется погода и климат. Воздух является источником кислорода, необходимого для нормального существования подавляющего числа живых организмов (см. Дыхание, Аэробы). Сжиганием топлива на Воздух человечество издавна получает необходимое для жизни и производственной деятельности тепло (см. Горение). Воздух — один из важнейших источников химического сырья.


Сухой Воздух состоит из следующих газов (% по объёму): азота N2 78,09; кислорода O2 20,95; аргона Ar 0,93; углекислого газа CO2 0,03. Воздух содержит очень небольшие количества остальных инертных газов, а также водорода H2, озона О3, окислов азота, окиси углерода СО, аммиака NH3, метана CH4, сернистого газа SO2 и др. (подробнее о составе сухого Воздух см. таблицу в ст. Атмосфера). Учитывая молекулярную массу каждого компонента и его долю в составе Воздух, можно рассчитать среднюю молекулярную массу Воздух, равную 28,966 (приблизительно 29). Содержание в Воздух азота, кислорода и инертных газов практически постоянно, причём постоянная концентрация O2 (и отчасти N2) поддерживается растительным миром Земли (см. Фотосинтез, Азотфиксация). Содержание в Воздух углекислого газа, окислов азота, сернистых соединений существенно колеблется (в частности, возрастает вблизи больших городов и промышленных предприятий; см. также Воздушный бассейн). Содержание воды в Воздух непостоянно и может составлять от 0,00002 до 3% по объёму (см. Влажность воздуха). В Воздух всегда находится большое число мелких твёрдых частичек — пылинок (от нескольких млн. в 1 м3 чистого комнатного Воздух до 100—300 млн. в 1 м3 Воздух больших городов, см. Аэрозоли). Такие частички зачастую служат центрами конденсации атмосферной влаги и являются причиной образования туманов. Воздух проникает в почву, составляя от 10 до 23—28% её объёма. Почвенный Воздух, благодаря биологическим процессам в почве, существенно отличается от обычного по составу; он содержит (по объёму): 78—80% O2, 0,1—20,0% N2 и 0,1—15,0% CO2.



Историческая справка. Учёные древности считали Воздух одним из элементов, из которых состоит всё существующее. Анаксимен из Милета (6 в. до н. э.) называл Воздух «первоматерией», а Эмпедокл (5 в. до н. э.) и Аристотель (4 в. до н. э.) — одним из четырёх элементов — стихий (наряду с огнём, водой и землёй), в которых заключены все присущие материи свойства. Представление о Воздух как о самостоятельном индивидуальном веществе господствовало в науке до конца 18 в. В 1775—77 французский химик А. Лавуазье показал, что в состав Воздух входят открытые незадолго до того химические элементы азот и кислород. В 1894 английские учёные Дж. Рэлей и У. Рамзай обнаружили в Воздух ещё один элемент — аргон, затем в Воздух были открыты и другие инертные газы.


Большую роль в истории науки сыграло изучение физических свойств Воздух Итальянский учёный Г. Галилей (1632) нашёл, что Воздух в 400 раз легче воды. Итальянские учёные Воздух Вивиани и Э. Торричелли (1643) открыли существование атмосферного давления и изобрели для его измерения барометр. Французский учёный Б. Паскаль обнаружил уменьшение атмосферного давления с высотой. Изучая соотношение между давлением и объёмом Воздух, Р. Бойль и Р. Тоунлей (1662) в Англии и Э. Мариотт (1676) во Франции открыли закон, названный их именами (см. Бойля — Мариотта закон); в дальнейшем, с развитием науки были установлены и другие газовые законы (см. Газы). Долгое время Воздух и его главные компоненты не удавалось превратить в жидкость, и потому их считали «постоянными» газами. Неудача попыток сжижения Воздух была объяснена лишь после того, как Д. И. Менделеев (1860) установил понятие критической температуры и давления. В 1877, используя охлаждение Воздух до температуры ниже критической (около —140°С) под высоким давлением, Л. П. Кальете (Париж) и Р. Пикте (Женева) удалось превратить Воздух в жидкость. В 1895 немецкий инженер К. Линде сконструировал и построил первую промышленную установку для сжижения Воздух (см. Сжижение газов).


Физические свойства. Давление Воздух при 0°С на уровне моря 101325 н/м2 (1,01325 б, 1 , 760 мм рт. cт.); в этих условиях масса 1 л Воздух равна 1,2928 г. Для большинства практических целей Воздух можно рассматривать как идеальный газ; в частности, парциальное давление каждого газа, входящего в состав Воздух, не зависит от присутствия других компонентов Воздух (см. Дальтона законы). Критическая температура —140,7°С, критическое давление 3,7 Мн/м2 (37,2 am). Перечисленные ниже свойства Воздух даны при давлении 101325 н/м2 или 1,01325 б (так называемое нормальное давление). Удельная теплоёмкость при постоянном давлении Cp 10,045·103 дж/(кг·К), т. e. 0,24 кал/(г·°С) в интервале 0—100°С, а при постоянном объёме Cv8,3710·103 дж/(кг·К), т. е. 0,2002 кал/(г·°С) в интервале 0—1500°С. Коэффициент теплопроводности 0,024276 вт/(м·К), то есть 0,000058 кал/(см·сек·°С) при 0°С и 0,030136 вт/(м·К), т. е. 0,000072 кал/(см·сек·°С) при температуре 100°С; коэффициент теплового расширения 0,003670 (0—100°С). Вязкость 0,000171 (0°С) и 0,000181 (20°С) мн·сек/м2 (спз). Степень сжимаемости z = pV/p0V0 1,00060 (0°С), 1,09218 (25°С), 1,18376 (50°C); показатель преломления 1,00029; диэлектрическая проницаемость 1,000059 (0°С). Растворимость в воде (в см3 на 1 л воды) 29,18 (0°С) и 18,68 (20°С). Поскольку растворимость кислорода в воде несколько выше, чем азота, соотношение этих газов при растворении в воде изменяется и составляет соответственно 35% и 65%. Скорость звука в Воздух при 0°С около 330 м/сек.


Жидкий Воздух — голубоватая жидкость с плотностью 0,96 г/см3 (при—192°С и нормальном давлении). Свободно испаряющийся при нормальном давлении жидкий Воздух имеет температуру около —190°С. Состав его непостоянен, так как азот (и аргон) улетучивается быстрее кислорода. Фракционное испарение жидкого Воздух используют для получения чистого азота и кислорода, аргона и других инертных газов. Жидкий Воздух хранят и транспортируют в дьюара сосудах или в резервуарах специальной конструкции — танках. Сжатый Воздух хранят в стальных баллонах при 15 Мн/м2 (150 am); окраска баллонов чёрная с белой надписью «Воздух сжатый».
  Воздух Л. Василевский.


  Физиолого-гигиеническое значение Воздух Колебания содержания азота и кислорода в атмосфере Воздух незначительны и не оказывают существенного влияния на организм человека. Для нормальной жизнедеятельности человека важен процентный состав Воздух, в частности парциальное давление кислорода. Парциальное давление кислорода Воздух над уровнем моря составляет 21331,5 н/м2 (160 мм рт. ст.), при уменьшении его до 18665,1 н/м2 (140 мм рт. ст.) появляются первые признаки кислородной недостаточности, которые легко компенсируются у здоровых людей учащением и углублением дыхания, ускорением кроветока, увеличением количества эритроцитов и т.д. При уменьшении парциального давления до 14 665,4 н/м2 (110 мм рт. ст.) компенсация становится недостаточной и появляются признаки гипоксии, а уменьшение его до 6 666,1—7 999,3 н/м2 (50—60 мм рт. cт.) опасно для жизни. Повышение парциального давления кислорода вплоть до дыхания чистым кислородом (парциальное давление 101325 кн/м2760 мм рт. cт.) переносится здоровыми людьми без отрицательных последствий. При обычном парциальном давлении азот инертен. Увеличение его парциального давления до 0,8—1,2 Мн/м2 (8—12 ) приводит к проявлению наркотического действия (см. Наркоз). Значительное увеличение процентного содержания азота в Воздух (до 93% и более) вследствие уменьшения парциального давления кислорода может привести к аноксемии и даже смерти. Содержание углекислого газа — физиологического возбудителя дыхательного центра в атмосфере Воздух, составляет обычно 0,03— 0,04% по объёму. Некоторое повышение его концентрации в Воздух промышленных центров несущественно для организма. При высоких концентрациях углекислого газа и снижении парциального давления кислорода может наступить асфиксия. При содержании в Воздух 14—15% CO2 может наступить смерть от паралича дыхательного центра. Увеличение концентрации CO2 в Воздух помещений происходит в основном за счёт дыхания и жизнедеятельности людей (взрослый человек в покое при 18—20°С выделяет около 20 л CO2 в час). Поэтому содержание в Воздух углекислого газа, с одной стороны, и органических соединений, микроорганизмов, пыли и т.п., с другой, увеличиваются одновременно; концентрация CO2 в Воздух помещений является санитарным показателем чистоты Воздух Содержание CO2 в Воздух жилых помещений не должно превышать 0,1%. Находящиеся в незначительном количестве в атмосфере Воздух инертные газы — аргон, гелий, неон, криптон, ксенон при нормальном давлении индифферентны для организма. Обнаруживаемые в атмосфере Воздух в ничтожных концентрациях радиоактивные газы радон и его изотопы — актинон и торон, имеющие малый период полураспада, не оказывают неблагоприятного воздействия на человека.


В атмосфере Воздух обычно обнаруживаются различные микроорганизмы (бактерии, грибки и др.). Однако патогенные микроорганизмы встречаются в Воздух крайне редко, в связи с чем передача инфекционных заболеваний через атмосферу Воздух может происходить в исключительных случаях, например при применении бактериологического оружия, в закрытых помещениях при наличии больных, выделяющих в Воздух патогенные микроорганизмы вместе с мельчайшими капельками слюны при кашле, чихании, разговоре. В зависимости от устойчивости микроорганизмов они могут передаваться через Воздух как воздушно-капельным, так и воздушно-пылевым путём (наиболее устойчивые, например, возбудители туберкулёза, дифтерии).


Для жизнедеятельности человека большое значение имеют температура, влажность, движение Воздух Для обычно одетого человека, выполняющего лёгкую работу, оптимальная температура Воздух 18—20°С. Чем тяжелее работа, тем ниже должна быть температура Воздух Благодаря совершенным механизмам терморегуляции человек легко переносит изменения температуры и может приспособиться к различным климатическим условиям. Оптимальная для человека относительная влажность Воздух 40—60%. Сухой Воздух при всех условиях переносится хорошо. Повышенная влажность Воздух действует неблагоприятно: при высокой температуре она способствует перегреванию, а при низкой температуре переохлаждению организма. Движение Воздух вызывает увеличение теплоотдачи организма. Поэтому при высокой температуре (до 37°С) ветер способствует предохранению человека от перегревания, а при низкой — переохлаждению организма. Особенно неблагоприятна для человека комбинация ветра с низкой температурой и высокой влажностью. Известное значение придаётся ионизации Воздух Лёгкие ионы с отрицательным зарядом оказывают положительное воздействие на организм. Для ионизации Воздух предложен ряд приборов.
  Г. И. Сидоренко.


  Загрязнение Воздух Рост масштабов хозяйственной деятельности увеличивает загрязнение Воздух Развитие промышленности, энергетики, транспорта приводит к повышению содержания в Воздух углекислого газа (на 0,2% от имеющегося в Воздух количества ежегодно) и ряда других вредных газов. Металлургические и химические предприятия и ТЭЦ загрязняют Воздух сернистым газом, окислами азота, сероводородом, галогенами и их соединениями. Другим серьёзным источником загрязнения Воздух служит автотранспорт. По некоторым подсчётам, 1 тыс. автомобилей в день выбрасывает с выхлопными газами в Воздух 3,2 т окиси углерода, от 200 до 400 кг других продуктов неполного сгорания топлива, 50—150 кг соединений азота. Очень велико загрязнение Воздух твёрдыми частицами. В Питсбурге (США) на 1 кв. миле (259 га) ежегодно осаждается 610 т пыли. Промышленные предприятия, ТЭЦ, автотранспорт, лесные пожары, пыльные бури, возникающие в результате эрозии почв при неправильном землепользовании, повышают концентрацию твёрдых частиц (пыли и дыма) в Воздух настолько, что это существенно (на 20—40%) понижает солнечную радиацию, дошедшую до поверхности земли в районе больших городов. О масштабах таких процессов можно судить хотя бы по тому, что пыльные бури 1930—34 в США унесли до 25 см почвенного слоя и перенесли около 200 млн. т пыли на расстояния до 1000 км.


Загрязнение Воздух приводит к ухудшению условий жизни человека, животных и растений. Вредное действие на живые организмы при этом вызывается не только первичными компонентами промышленных выбросов, но и образующимися из них новыми токсическими веществами, так называемыми фотооксидантами. Загрязнение Воздух иногда может достигать таких масштабов, что приводит к увеличению заболеваемости и смертности населения. Особую опасность представляют радиоактивные загрязнения Воздух; вследствие постоянных движений воздушных масс они носят глобальный характер (см. Радиоактивное загрязнение). Некоторые загрязнения Воздух вызывают профессиональные заболевания. Влияние загрязнений Воздух на условия жизни весьма велико. В СССР приняты законы об охране природы, предусматривающие необходимость санитарного контроля за состоянием Воздух и ответственность руководителей промышленных предприятий за тщательную очистку и обезвреживание промышленных газов до их выброса в атмосферу (см. Газов очистка). В качестве обязательных мероприятий при планировке и застройке городов и посёлков и размещении промышленных объектов предусматривается создание санитарно-защитных зон (разрывов), вынос вредных в санитарном отношении промышленных предприятий за пределы жилых районов и т.д. (см. Благоустройство населённых мест, Реконструкция города). См. также Воздушный бассейн.


Анализ Воздух Предельно допустимые концентрации (обычно в мг на 1 л или на 1 м3 Воздух) вредных и взрывоопасных веществ в производственной воздушной среде регламентируются законодательно. Методы анализа Воздух зависят от агрегатного состояния определяемого вещества. Например, пыль и аэрозоли обычно улавливают ватными или бумажными фильтрами; иногда для улавливания аэрозолей применяют стеклянные фильтры; туманы и газы поглощают главным образом жидкостями. Наиболее распространённые методы определения содержания вредных веществ в Воздухфотометрический анализ, нефелометрия и турбидиметрия. Для быстрого определения малых концентраций токсичных и взрывоопасных веществ в Воздух наиболее часто используют автоматические газоанализаторы. Особое место в анализе Воздух занимает определение радиоактивных загрязнений (см. Дозиметрия).


Воздух в технике. Благодаря содержащемуся в Воздух кислороду, он используется как химический агент в различных процессах. Сюда относятся: горение топлива, выплавка металлов из руд (доменный и мартеновский процессы), промышленное получение многих химических соединений (серной и азотной кислот, фталевого ангидрида, окиси этилена, уксусной кислоты, ацетона, фенола и др.); ценность Воздух как химического агента существенно повышают, увеличивая содержание в нём кислорода. Воздух является важнейшим промышленным сырьём для получения кислорода, азота, инертных газов. Физические свойства Воздух используют в тепло- и звукоизоляционных материалах, в электроизоляционных устройствах; упругие свойства Воздух — в пневматических шинах; сжатый Воздух служит рабочим телом для совершения механической работы (пневматические машины, струйные и распылительные аппараты, перфораторы и т.д.).


Искусственный Воздух (точнее — искусственная атмосфера, смеси газов, пригодные для дыхания) впервые был использован в медицине при заболеваниях, сопровождающихся кислородной недостаточностью (40—60% кислорода в смеси с обычным Воздух или 95% кислорода и 5% CO2). Подобные искусственные газовые смеси применяются в высотной авиации, горноспасательном деле. Особое значение имеет искусственный Воздух в водолазном деле. Обычный Воздух непригоден для работы при давлениях, существенно превышающих нормальное: в этих условиях Воздух оказывает наркотическое действие, а повышение растворимости азота в крови и тканях тела делает опасным быстрый подъём водолаза на поверхность. Выделение пузырьков азота из крови может вызвать кессонную болезнь и смерть. Поэтому в последние 10—15 лет испытываются для работ на больших глубинах (в условиях высоких давлений) безазотные газовые смеси, содержащие главным образом гелий (до 96,4%) и кислород (4—2%) под давлением 0,7—2 Мн/м2 (7—20 am). Такие смеси устраняют опасность кессонной болезни, однако создают определённый дискомфорт из-за высокой теплопроводности гелия; отмечено также существенное изменение тембра голоса в такой атмосфере. Проблема искусственного Воздух решается также при создании обитаемых космических кораблей (см. Атмосфера кабины). Советские космические корабли «Восток» и «Восход» были оборудованы специальной системой, поддерживающей состав Воздух, близкий к обычному: парциальное давление кислорода 20—40 кн/м2, объёмная концентрация CO2 0,5—1%. Американские космические корабли «Джемини» имели чисто кислородную атмосферу при давлении около 0,3 .


  Лит.: Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958; Некрасов Б. Воздух, Основы общей химии, т. 1, М., 1965; Баттан Л. Дж., Загрязнённое небо, пер. с англ., М., 1967; Арманд Д., Нам и внукам, 2 изд., М., 1966; Соколов Воздух А., Газы земли, [М., 1966]; Определение вредных веществ в воздухе производственных помещений, 2 изд., М., 1954; Руководство по коммунальной гигиене, т. 1, М., 1961.
  Воздух Л. Василевский.



"БСЭ" >> "В" >> "ВО" >> "ВОЗ"

Статья про "Воздух" в Большой Советской Энциклопедии была прочитана 573 раз
Бургер двойного помола
Жаренный морской черенок

TOP 20