Деление круга

Определение "Деление круга" в Большой Советской Энциклопедии


Деление круга (окружности) на n равных частей, одна из древнейших задач математики; состоит в том, чтобы произвести Деление круга при помощи только циркуля и линейки. Древнегреческие математики умели делить окружность на 3, 5, 15 частей, а также неограниченно удваивать число сторон полученных многоугольников. В конце 18 в. К. Гаусс показал, что окружность можно разделить при помощи циркуля и линейки на 17 частей и вообще на такое число частей n, которое может быть представлено в виде n = 22k + 1 и является простым или равно произведению различных таких чисел и любой степени числа 2 (при k = 0, 1, 2, 3, 4 получаются простые числа n = 3, 5, 17, 257, 65537; при k = 5, 6, 7 соответствующие числа не простые). Ни на какое другое число равных частей разделить окружность при помощи циркуля и линейки нельзя. Задача Деление круга эквивалентна решению двучленного уравнения xn - 1 = 0. Деление круга при помощи циркуля и линейки возможно только тогда, когда все корни этого уравнения можно получить последовательным решением квадратных и линейных уравнений.




"БСЭ" >> "Д" >> "ДЕ" >> "ДЕЛ"

Статья про "Деление круга" в Большой Советской Энциклопедии была прочитана 478 раз
Яйца в кляре
Яйца в кляре

TOP 20