БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Логарифмическая функцияОпределение "Логарифмическая функция" в Большой Советской Энциклопедии
y = lnx; (1)
х = еу (2)
(е — неперово число). Т. к. ey > 0 при любом действительном у, то Логарифмическая функция определена только при х > 0. В более общем смысле Логарифмическая функция называют функцию
где М = 1/In а. Логарифмическая функция — одна из основных элементарных функций; её график (рис. 1) носит название логарифмики. Основные свойства Логарифмическая функция вытекают из соответствующих свойств показательной функции и логарифмов; например, Логарифмическая функция удовлетворяет функциональному уравнению Логарифмическая функция была хорошо известна математикам 17 в. Впервые зависимость между переменными величинами, выражаемая Логарифмическая функция, рассматривалась Дж. Непером (1614). Он представил зависимость между числами и их логарифмами с помощью двух точек, движущихся по параллельным прямым (рис. 2). Одна из них (У) движется равномерно, исходя из С, а другая (X), начиная движение из А, перемещается со скоростью, пропорциональной её расстоянию до В. Если положить СУ = у, ХВ = х, то, согласно этому определению, dx/dy = - kx, откуда .
Логарифмическая функция на комплексной плоскости является многозначной (бесконечнозначной) функцией, определённой при всех значениях аргумента z ¹ 0 обозначается Lnz. Однозначная ветвь этой функции, определяемая как
Все значения Логарифмическая функция для отрицательных: действительных z являются комплексными числами. Первая удовлетворительная теория Логарифмическая функция в комплексной плоскости была дана Л. Эйлером (1749), который исходил из определения
Статья про "Логарифмическая функция" в Большой Советской Энциклопедии была прочитана 632 раз |
TOP 20
|
|||||||||||