Метатеорема

Определение "Метатеорема" в Большой Советской Энциклопедии


Метатеорема (от мета...), теорема относительно объектов (понятий, определений, аксиом, доказательств, правил вывода, теорем и др.) какой-либо научной теории (т. н. предметной, или объектной, теории), доказываемая средствами метатеории этой теории. Термин «Метатеорема» употребляется преимущественно в применении к теоремам об объектах формализованных теорий (т. е. в случае, когда предметная теория является исчислением, или формальной системой). Если Метатеорема, относящаяся к какому-либо логико-математическому исчислению, доказывается т. н. финитными средствами, ни в какой форме не использующими абстракции актуальной бесконечности, то её относят к метаматематике; таковы, например, теорема о дедукции для исчисления высказываний или исчисления предикатов, теорема Гёделя о неполноте формальной арифметики и более богатых систем (см. Полнота в логике), теорема Чёрча о неразрешимости разрешения проблемы для исчисления предикатов, теорема Тарского о неопределимости предиката истинности для широкого класса исчислений средствами самих этих исчислений. Если же на характер трактуемых в Метатеорема понятий и (или) на средства её доказательства не накладывается никаких финитистских, или конструктивистских (см. Конструктивное направление в математике), ограничений, то такую Метатеорема причисляют к т. н. теоретико-множественной логике предикатов; примеры: теорема Гёделя о полноте исчисления предикатов, теорема Лёвенхейма — Сколема об интерпретируемости любой непротиворечивой теории на области натуральных чисел и вообще любые предложения, в которых говорится что-либо о «произвольной интерпретации», «совокупности всех интерпретаций», «общезначимости» и т.п. (в частности, все результаты о категоричности различных систем аксиом, т. е. об изоморфизме произвольных их интерпретаций, удовлетворяющих, быть может, некоторым дополнительным условиям). К Метатеорема относятся и любые теоремы о теоремах содержательных математических теорий, например многочисленные «принципы двойственности» из различных областей математики (проективная геометрия, многие алгебраические теории и др.).
Лит. см. при статьях Метаматематика, Метатеория.
  Ю. А. Гастев.





"БСЭ" >> "М" >> "МЕ" >> "МЕТ" >> "МЕТА"

Статья про "Метатеорема" в Большой Советской Энциклопедии была прочитана 227 раз
Коптим скумбрию в коробке
Креветки с газировкой

TOP 20