БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ
Навигация:

Библиотека DJVU
Photogallery

БСЭ

Статистика:


Паскаля теорема

Значение слова "Паскаля теорема" в Большой Советской Энциклопедии


Паскаля теорема, теорема геометрии, утверждающая, что во всяком шестиугольнике, вписанном в коническое сечение (эллипс, гиперболу, параболу), точки пересечения трёх пар противоположных
Рис. 2 к ст. Паскаля теорема.
сторон (или их продолжений) лежат на одной прямой, называемой прямой Паскаля; при этом шестиугольник может быть как выпуклым, так и звездчатым. На рис. 1 изображен шестиугольник, у которого последовательные вершины обозначены цифрами 1,2,3,4,5,6; противоположными сторонами считаются такие, которые отделены друг от друга двумя сторонами, то есть стороны 12 и 45, 23 и 56, 34 и 61 (здесь сторона 45, например, отделена от стороны 12 сторонами 23 и 34); прямая Паскаля изображена пунктиром (если выбрать иные последовательности нумерации тех же вершин, то есть взять другие шестиугольники, то будут получаться различные прямые Паскаля).

  Паскаля теорема установлена Б. Паскалем в 1639. Частный случай Паскаля теорема для конических сечений, являющихся парой прямых, был известен ещё в древности (теорема Паппа). Этот случай приведён на рис. 2, где вершины 1, 3, 5 лежат на одной прямой, а вершины 2,4,6—на другой (прямая Паскаля изображена пунктиром). Паскаля теорема связана с Брианшона теоремой. Эти теоремы устанавливают важные проективные свойства конических сечений.

 

  Лит.: Глаголев Н. А., Проективная геометрия, 2 изд., М., 1963; Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971.

Рис. 2 к ст. Паскаля теорема.
Рис. 2 к ст. Паскаля теорема.


Рис. 1 к ст. Паскаля теорема.
Рис. 1 к ст. Паскаля теорема.


В Большой Советской Энциклопедии рядом со словом "Паскаля теорема"

Паскаля закон | Буква "П" | В начало | Буквосочетание "ПА" | Паскаля треугольник


Статья про слово "Паскаля теорема" в Большой Советской Энциклопедии была прочитана 1487 раз


Интересное