| | |
 |
 |
 |
Брианшона теорема
Определение "Брианшона теорема" в Большой Советской Энциклопедии
Брианшона теорема, теорема геометрии, утверждающая, что во всяком шестиугольнике, описанном около конического сечения — эллипса (в частности, окружности), гиперболы, параболы, — прямые, соединяющие три пары противоположных вершин, проходят через одну точку (см. рис.); названа по имени французского математика Ш. Ж. Брианшона (Ch. J. Brianchon, 1806). Брианшона теорема находится в тесной связи с Паскаля теоремой. Эти две теоремы устанавливают основные проективные свойства конических сечений. Лит.: Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961, § 144—46.
Статья про "Брианшона теорема" в Большой Советской Энциклопедии была прочитана 548 раз
|
| |
|