БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Пластичность (свойство твёрдых тел)Определение "Пластичность (свойство твёрдых тел)" в Большой Советской Энциклопедии
В реальных кристаллах имеются различные дефекты (точечные дефекты, примесные атомы, дислокации, частицы других фаз), и сопротивление скольжению зависит от взаимодействия движущихся дислокаций с этими дефектами. В беспримесных пластических кристаллах междислокационное взаимодействие является основным. Часть сопротивления скольжению, связанная с непосредственным столкновением дислокаций, может быть уменьшена за счёт тепловой активации, однако преобладающая часть обусловлена дальнодействующим взаимодействием дислокаций через собственные поля напряжений, которые они вокруг себя создают, и почти не зависит от температуры. В результате взаимодействия друг с другом дислокации тормозятся и останавливаются, поэтому для протекания деформации с постоянной скоростью необходимо непрерывное рождение новых дислокаций. Это приводит к постоянному увеличению плотности дислокаций в кристалле, которая достигает 1011—1012 см-2; соответственно растет их взаимное сопротивление скольжению — происходит деформационное упрочнение, или наклёп кристалла. Развитие междислокационного взаимодействия отражает диаграмма «напряжение — деформация» (рис. 5), которая в типичных случаях обнаруживает 3 характерных участка, отвечающих трём основным стадиям эволюции дислокационной структуры. На стадии I (стадия лёгкого скольжения) плотность дислокаций относительно невелика, каждая дислокация до остановки успевает пройти расстояние, сопоставимое с размером всего кристалла, и значительная часть дислокаций выходит на поверхность кристалла. Сопротивление скольжению обусловлено взаимодействием отдельных дислокаций, плотность которых возрастает с деформацией относительно медленно, поэтому коэффициент упрочнения здесь мал (~ 10-з G). С увеличением степени деформации и ростом плотности дислокаций их распределение становится существенно неоднородным: дислокации образуют компактные скопления в плоскостях скольжения (стадия II). Поля напряжений от этих скоплений, в свою очередь, являются причиной побочной пластической деформации. Эта локальная, различным образом направленная деформация может не проявляться в общем формоизменении кристалла, но увеличивает плотность дислокаций в результате появления дислокаций во вторичных системах скольжения. Взаимодействие дислокаций основной и вторичных систем приводит к образованию дислокационных сгущений и формированию дислокационной ячеистой структуры (рис. 6). На протяжении всей стадии II характер дислокационной структуры сохраняется, уменьшается только размер ячеек; коэффициент упрочнения ~10-2 G. С дальнейшим увеличением плотности дислокаций происходит «выдавливание» части дислокаций из плоскостей скольжения, в которых они были расположены; при этом дислокации противоположных знаков встречаются и аннигилируют. Происходит разрядка дислокационной плотности, сопровождающаяся падением коэффициента упрочнения (стадия III). Параллельно начинаются процессы нарушения сплошности (образование микротрещин), которые приводят в конечном итоге к разрушению кристалла, определяющему максимально достижимую величину пластической деформации (см. Прочность). При высоких температурах дислокационный механизм Пластичность (свойство твёрдых тел) сочетается с диффузионным и самодиффузионным. В кристаллах с примесями релаксация напряжений у дислокаций или дислокационных скоплений может осуществляться в результате перераспределения примесных атомов. Вокруг дислокации образуются примесные «атмосферы» и дислокационная Пластичность (свойство твёрдых тел) падает (деформационное старение). Поэтому удаление примесей обычно повышает Пластичность (свойство твёрдых тел) С другой стороны, дислокации являются эффективными стоками и источниками вакансий и междоузельных атомов. Рождение или аннигиляция этих дефектов приводят к достройке или сокращению обрывающихся на дислокациях неполных атомных плоскостей и, следовательно, «переползанию» дислокаций из своей плоскости скольжения. Потоки точечных дефектов между дислокациями разного знака приводят к самодиффузионной пластической деформации, а вызванное этими потоками переползание дислокаций позволяет им обойти препятствия, лежащие в плоскости скольжения. Путь скольжения, пройденный каждой дислокацией в условиях высокотемпературной деформации, увеличивается (по сравнению с обычными температурами, когда диффузионная подвижность мала). Процессы разрядки дислокационной плотности вследствие взаимной аннигиляции дислокаций протекают более интенсивно, деформационное упрочнение падает и деформация развивается при постоянной нагрузке (ползучесть). Двойникование. Этот механизм связан с деформацией элементарной ячейки кристалла, приводящей к изменению ориентировки части кристалла относительно действующих сил (см. также Двойникование). Переориентированная часть кристалла претерпевает относительно исходного кристалла двойниковый сдвиг, величина которого определяется симметрией кристаллической решётки. В реальных условиях развитие деформации происходит путём зарождения и распространения в исходном кристалле прослоек двойниковой компоненты. Если двойниковая прослойка заканчивается внутри кристалла, у её концов возникают поля напряжений; взаимодействие двойников приводит к деформационному упрочнению. В некоторых кристаллах, например кальците, двойникование — основной механизм пластической деформации, но обычно двойникование развивается преимущественно при низких температурах, когда скольжение затруднено и создаются условия для локальной концентрации напряжений, необходимой для зарождения двойников. Пластичность (свойство твёрдых тел) вследствие протекания фазового превращения. Необратимое изменение формы может быть также результатом образования под нагрузкой новой фазы, имеющей иную кристаллическую решётку, чем исходный кристалл. При этом исходная фаза должна быть метастабильна (см. Метастабильное состояние) по отношению к образующейся, по крайней мере при действии механических напряжений. Поскольку относительная стабильность зависит также от температуры, Пластичность (свойство твёрдых тел) в этом случае существенно зависит от температуры деформирования по отношению к температуре равновесия фаз. В определённых случаях, уменьшая стабильность образовавшейся под нагрузкой фазы за счёт изменения температуры, можно уничтожить полученную при превращении деформацию: кристалл возвращается к исходной форме («эффект памяти»). В поликристаллах действие рассмотренных механизмов пластической деформации внутри зёрен осложнено взаимодействием между зёрнами. Деформация поликристалла есть суммарный результат деформации во многих различно ориентированных относительно нагрузок и находящихся в различных условиях зёрен. Поэтому развитие деформации не имеет четко выраженного стадийного характера, как деформации монокристаллов (рис. 5). Межзёренные границы препятствуют распространению дислокаций и, как правило, упрочняют кристаллические тела при низких температурах. Наоборот, при высоких температурах наличие границ, являющихся источниками или стоками дефектов, повышает Пластичность (свойство твёрдых тел) Сочетание дислокационной и самодиффузионной деформаций в приграничных областях приводит к их высокой Пластичность (свойство твёрдых тел), проявляющейся в специфическом механизме высокотемпературной деформации поликристаллов — «проскальзывании» по границам зёрен. Перемещение зёрен друг относительно друга происходит подобно движению частиц в сыпучих материалах и в некоторых случаях обеспечивает деформацию до 1000% («сверхпластичность»). Высокая Пластичность (свойство твёрдых тел) может достигаться также, если в ходе деформирования успевает проходить рекристаллизация, приводящая к удалению наиболее искажённых и, следовательно, наименее пластичных зёрен, которые поглощаются растущими зёрнами с более совершенной структурой. Постоянное восстановление Пластичность (свойство твёрдых тел) за счёт рекристаллизации широко используется на практике при горячей обработке металлов. Пластичность (свойство твёрдых тел) простых аморфных тел связана с диффузионными перегруппировками атомов и молекул. Пластичность (свойство твёрдых тел) ряда веществ связана с передвижением недеформирующихся твёрдых частиц друг относительно друга в некоторой вязкой среде. К такого рода явлениям можно отнести Пластичность (свойство твёрдых тел) глин, сыпучих тел, смоченных водой, и т.п. Изучение Пластичность (свойство твёрдых тел) представляет большой практический интерес, т.к. делает возможным рациональный выбор технических материалов, к Пластичность (свойство твёрдых тел) которых обычно предъявляется целый комплекс требований как при обработке, так и при эксплуатации их в различных условиях. Изучением различных аспектов Пластичность (свойство твёрдых тел) занимается ряд физико-математических и теоретических дисциплин: физика твёрдого тела (в частности, теория дислокаций) исследует микроскопические механизмы Пластичность (свойство твёрдых тел), механика сплошных сред (теории пластичности и ползучести) рассматривает Пластичность (свойство твёрдых тел) тел, абстрагируясь от их атомно- кристаллической структуры, сопротивление материалов и др.
Лит.: Фридель Ж., Дислокации [кристаллов], пер. с англ., М., 1967; Физика деформационного упрочнения монокристаллов, К., 1972; Набарро Ф. Р., Базинский З. С., Холт Д. Б., Пластичность монокристаллов, пер. с англ., М., 1967; Хоникомб Р., Пластическая деформация металлов, пер. с англ., М., 1972.
II пластической деформации." href="/a_pictures/18/10/289539084.jpg">II пластической деформации." src="a_pictures/18/10/th_289539084.jpg">
I — кристалл до вдавливания; II — образование краудионов при вдавливании острия; III — конечное изменение формы. В кристалле образовались междоузельные атомы." href="/a_pictures/18/10/230913873.jpg">атомы."http://iodine.atomistry.com/">I — кристалл до вдавливания; II — образование краудионов при вдавливании острия; III — конечное изменение формы. В кристалле образовались междоузельные атомы." src="a_pictures/18/10/th_230913873.jpg">
Статья про "Пластичность (свойство твёрдых тел)" в Большой Советской Энциклопедии была прочитана 793 раз |
TOP 20
|
|||||||||||||||||||