Симметрические функции

Определение "Симметрические функции" в Большой Советской Энциклопедии

Симметрические функции, функции нескольких переменных, не изменяющиеся при любых перестановках переменных, например  или . Особое значение в алгебре имеют симметрические многочлены (с. м.) и среди них — элементарные симметрические многочлены (э. с. м.) — функции



, , , …, ,


где суммы распространены на комбинации неравных между собой чисел k, l,...; они имеют первую степень относительно каждого из переменных. Согласно формулам Виета, x1, x2,..., xn являются корнями уравнения:
xn - f1xn-1 + f2xn-2 - ··· + (- 1) nfn = 0.


Согласно основной теореме теории Симметрические функции, любой с. м. представляется как многочлен от э. с. м., и притом только единственным образом: F (x1, x2.,..., xn) = G (f1, f2,..., fn); если все коэффициенты в F целые, то и коэффициенты в G целые. Иными словами, всякий с. м. от корней уравнения выражается целым рациональным образом через его коэффициенты; например,
.
  Другим важным классом Симметрические функции являются степенные суммы
.
Они связаны с э. с. м. формулами Ньютона
si - f1sl-1 + f2sl-2 + ··· + (— 1) lfl = 0, ,
и
sn+l - f1sn+l-1 + ··· +(-1) n fnsl = 0,
,
позволяющими последовательно выражать fk через srn и обратно.



Функция называется кососимметрической, или знакопеременной, если она не изменяется при чётных перестановках x1, x2,..., xn и меняет знак при нечётных перестановках. Такие функции рационально выражаются через f1, f2,..., fn и разностное произведение (см. Дискриминант) D = Пк<1 (xk xl), квадрат которого является Симметрические функции и потому рационально выражается через f1, f2,..., fn.
 
  Лит.: Курош А. Г., Курс высшей алгебры, 10 изд., М., 1971.




"БСЭ" >> "С" >> "СИ" >> "СИМ" >> "СИММ"

Статья про "Симметрические функции" в Большой Советской Энциклопедии была прочитана 403 раз
Коптим скумбрию в коробке
Английская картошка фри

TOP 20