Синтетические кристаллы

Определение "Синтетические кристаллы" в Большой Советской Энциклопедии


Изделия из алюмогранатов
Синтетические кристаллы, кристаллы, выращенные искусственно в лабораторных или заводских условиях. Из общего числа Синтетические кристаллы около 104 относятся к неорганическим веществам. Некоторые из них не встречаются в природе. Однако первое место занимают органические Синтетические кристаллы, насчитывающие сотни тысяч разнообразных составов и вообще не встречающиеся в природе. С другой стороны, из 3000 кристаллов, составляющих многообразие природных минералов, искусственно удаётся выращивать только несколько сотен, из которых для практического применения существенное значение имеют только 20-30 (см. табл.). Объясняется это сложностью процессов кристаллизации и техническими трудностями, связанными с необходимостью точного соблюдения режима выращивания монокристаллов.


Синтетические водорастворимые кристаллы
  Первые попытки синтеза кристаллов, относящиеся к 16-17 вв., состояли в перекристаллизации воднорастворимых кристаллических веществ, встречающихся в виде кристаллов в природе (сульфаты, галогениды). После расшифровки состава природных минералов появились попытки синтеза минералов из порошков с использованием техники обжига. Этим методом были получены мелкие Синтетические кристаллы В начале 20 в. синтезом кристаллов занимались Е. С. Федоров и Г. В. Вульф, которые исследовали условия кристаллизации воднорастворимых соединений и усовершенствовали аппаратуру. В дальнейшем А. В. Шубников разработал общие принципы образования кристаллов из водных растворов [сегнетова соль, дигидрофосфат калия и др., см. рис. 1, 3, 4] и из расплавов (однокомпонентных и многокомпонентных систем), под его руководством была создана первая фабрика Синтетические кристаллы



Синтетические кристаллы. Аквамарин
Синтетические кристаллы кварца получают в гидротермальных условиях. Маленькие «затравочные» кристаллы различных кристаллографических направлений вырезаются из природных кристаллов кварца. Хотя кварц широко распространён в природе, однако его природные запасы не покрывают нужд техники, кроме того, природный кварц содержит много примесей. Синтетические кристаллы кварца массой до 15 кг выращивают в автоклавах в течение многих месяцев, а особо чистые кристаллы (оптический кварц) растут несколько лет (рис. 5, 6).

  Наиболее распространённые синтетические кристаллы<

Название

Химическая формула

Методы выращивания

Средняя величина кристаллов

Области применения

Кварц

SiO2

Гидротермаль-
ный

От 1 до 15 кг, 300´200´150 мм

Пьезоэлектрические преобразователи, ювелирные изделия, оптические приборы

Корунд

Al2O3

Методы Вернейля и Чохральского, зонная плавка

Стержни диаметром 20-40 мм, длиной до 2 м, пластинки 200´300´30 мм

Приборостроение, часовая промышленность, ювелирные изделия

Германий

Ge

Метод Чохральского

От 100 г до 10 кг, цилиндры 200 мм ´ 500 мм

Полупроводниковые приборы

Кремний

Si

То же

То же

То же

Галогениды

KCl, NaCl

То же

От 1 до 25 кг, 100´100´600

Сцинтилляторы

Сегнетова соль

KNaC4H4O6´4H2O

Кристаллизация из растворов

От 1 до 40 кг, 500´500´300 мм

Пьезоэлементы

Дигидрофосфат калия

KH2PO4

То же

От 1 до 40 кг, 500´500´300 мм

То же

Алюмоиттрие-
вый гранат

Y3Al5O12

Метод Чохральского, зонная плавка

40´40´150 мм 30´200´150 мм

Лазеры, ювелирные изделия

Иттриево-же-
лезистый гранат

Y3Fe5O12

Кристаллизация из растворов-расплавов

30´30´30 мм

Радиоакустическая промышленность, электроника

Гадолиний- галлиевый гранат

Gd3Ga5O12

Метод Чохральского

20´30´100 мм

Подложки для магнитных плёнок

Алмаз

C

Кристаллизация при сверхвысоких давлениях

От 0,1 до 3 мм

Абразивная промышленность

Ниобат лития

LiNbO3

Метод Чохральского

10´10´100 мм

Пьезо- и сегнетоэлементы

Нафталин

C10H8

Метод Киропулоса

Блоки в несколько кг

Сцинтилляционные приборы

Бифталат калия

C8H5O4K

Кристаллизация из водных растворов

40´100´100 мм

Рентгеновские анализаторы, нелинейная оптика

Кальцит

CaCO3

Гидротермальный

10´30´30 мм

Оптические приборы

Сульфид кадмия

CdS

Рост из газовой фазы

Стержни 20´20´100 мм

Полупроводниковые приборы

Сульфид цинка

ZnS

То же

Стержни 20´20´100 мм


Синтетические кристаллы. Дигидрофосфат калия


Арсенид галлия

GaAs

Газотранспорт-
ные реакции

Стержни 20´20´100 мм


Синтетические кристаллы. Кварц


Фосфид галлия

GaP

То же

То же

То же

Молибдаты редкоземельных элементов

Y2(MoO4)3

Комбинирован-
ный метод Чохральского

10´10´100 мм

Лазеры

Двуокись циркония

ZrO2

Высокочастот-
ный нагрев в холодном контейнере

Блоки около 2 кг, столбчатые кристаллы 100´10´50 мм

Ювелирные изделия

Двуокись гафния

HfO2

То же

То же

То же

Вольфрамат кальция

CaWO4

То же

10´10´100 мм

Лазеры

Алюминат иттрия

IAlO3

Метод Чохральского

10´10´100 мм

То же

Алюминий (трубы разных сечений)

Al

Метод Степанова

Длина 103 мм, диаметр 3-200 мм

Металлургия

  Мир геометрически правильных кристаллов связан в сознании людей с миром драгоценных и поделочных камней. Поэтому усилия многих учёных были направлены на синтез алмаза, рубина, аквамарина, сапфира и др. В начале века были получены Синтетические кристаллы рубина из растворов в расплавах поташа и соды в виде кристалликов темно-малинового цвета. Позже (в конце 19 в.) французский учёный Вернейль изобрёл специальный аппарат для получения Синтетические кристаллы рубина, который в дальнейшем был усовершенствован. Порошок Al2O3 с добавкой нескольких % Cr2O3 непрерывно поступает в зону печи, где происходит горение водорода в кислороде. Капли расплавленной массы попадают затем на более холодный участок затравки и тотчас же кристаллизуются. В СССР работают аппараты системы С. К. Попова, которые позволяют получать Синтетические кристаллы рубина в виде стержней диаметром от 20 до 40 мм и Длина до 2 м - для лазеров, нитеводителей, а также для стекол космических приборов. Большую долю Синтетические кристаллы рубина потребляет часовая промышленность, но основным потребителем синтетического рубина является ювелирная промышленность. Добавка к Al2O3 примесей солей Ti, Со, Ni и других позволяет получить Синтетические кристаллы различной окраски, имитирующие окраску сапфиров, топазов, аквамаринов (рис. 7, 8) и других природных драгоценных камней.


Синтетические кристаллы. Кварц
Синтетические кристаллы алмаза были получены в 50-х гг. из порошка графита, смешанного с Ni. Смесь прессуется в виде небольших (2-3 см) дисков, которые затем нагреваются до температуры 2000-3000 °С при давлении в 100-200 тыс. am. В этих условиях графит превращается в алмаз. Величина Синтетические кристаллы алмаза порядка десятых долей мм. В особых условиях удаётся получить Синтетические кристаллы алмаза до 2-3 мм. В СССР создана алмазная промышленность для нужд главным образом буровой техники. Синтетические кристаллы алмазов, конкурирующие с природными ювелирными образцами, пока получены в небольших количествах.


Синтетические кристаллы. Рубин
Начиная с 50-х гг. развивается промышленность органических Синтетические кристаллы - нафталина, стильбена, толана, антрацена и др., применяющихся в сцинтилляционных устройствах (см., например, Сцинтилляционный счётчик). Синтез этих кристаллов осуществляется в основном методом Чохральского. По размерам эти Синтетические кристаллы соперничают с крупными неорганическими (воднорастворимыми) кристаллами. Наиболее применяемые полупроводниковые кристаллы (Ge, Si, Ga, As и др.) в природе не встречаются. Все они выращиваются из расплавов в виде цилиндров диаметром от 10 до 20 см и Длина 30-50 см.


Синтетические кристаллы. Сегнетова соль
  В лабораторных условиях из растворов расплавов выращивают Синтетические кристаллы феррогранатов и изумрудов. Однако промышленного развития эти методы ещё не получили. Развиваются исследования, связанные с промышленным выпуском синтетических драгоценных камней на основе алюмоиттриевых гранатов (гранатиты) (рис. 2а, 2б) и двуокисей циркония и гафния (фианиты). Это - Синтетические кристаллы с окраски, имитирующие изумруды, топазы и алмазы за счёт большого широкой гаммой преломления света.


Синтетические кристаллы феррогранатов
Лит.: Федоров Е. С., Процесс кристаллизации, «Природа», 1915, декабрь; Вульф Г. В., Кристаллы, их образование, вид и строение, М., 1917; Шубников А. В., Как растут кристаллы, М. - Л., 1935; Аншелес О. М., Татарский В. Б., Штернберг А. А., Скоростное выращивание однородных кристаллов из растворов, [Л.], 1945; Попов С. К., Новый производственный метод выращивания кристаллов корунда, «Изв. АН СССР. Серия физическая», 1946, т. 10,№5-6; Штернберг А. А., Кристаллы в природе и технике, М., 1961; Условия роста и реальная структура кварца, в кн.: IV Всесоюзное совещание по росту кристаллов, Ер., 1972, ч. 2, с. 186; Мильвидский М. Г., Освенский В. Б., Получение совершенных монокристаллов полупроводников при кристаллизации из расплава, там же, ч. 2, с. 50; Багдасаров Х. С., Проблемы синтеза крупных тугоплавких оптических монокристаллов, там же, ч. 2, с. 6; Тимофеева В. А., Дохновский И. Б., Выращивание иттриево-железистых гранатов из растворов - расплавов на точечных затравках в динамическом режиме, «Кристаллография», 1971, т. 16, в. 3, с. 616; Яковлев Ю. М., Генделев С. Ш., Монокристаллы ферритов в радиоэлектронике, М., 1975.
  В. А. Тимофеева.




"БСЭ" >> "С" >> "СИ" >> "СИН" >> "СИНТ"

Статья про "Синтетические кристаллы" в Большой Советской Энциклопедии была прочитана 838 раз

Пицца в сковороде
Морской Гребешок в беконе

TOP 20