БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
СредниеОпределение "Средние" в Большой Советской Энциклопедии
Средние, средние значения, числовая характеристика группы чисел или функций.
частными случаями которого являются арифметическое, гармоническое и квадратичное Средние, именно: s (а равняется a, h и q соответственно при a = 1, —1 и 2. При a ® 0 степенное С, sa стремится к геометрическому Средние, так что можно считать s0 = g. Важную роль играет неравенство sa £ sb, если a £ b, в частности
Арифметическое и квадратичное Средние находят многочисленные применения в теории вероятностей, математической статистике, при вычислении по методу наименьших квадратов и др. Указанные выше Средние могут быть получены из формулы
где f-1(h) — функция, обратная к f (x) (см. Обратная функция), при соответствующем подборе функции f (x). Так, арифметическое Средние получается, если f(x) = x, геометрическое Средние — если f (x) = log x, гармоническое Средние — если f (x) = 1/x, квадратичное Средние — если f (x) = x2. которые переходят в обыкновенные степенные Средние при р1 = р2 =... = pn. Взвешенные Средние особенно важны при математической обработке результатов наблюдений (см. Наблюдений обработка), когда различные наблюдения производятся с разной точностью (с разным весом). 2) Арифметико-геометрическое среднее. Для пары положительных чисел а и b составляются арифметическое Средние a1 и геометрическое Средние g1. Затем для пары a1, g1 снова находятся арифметическое Средние a2 и геометрическое Средние g2 и т.д. Общий предел последовательностей an и gb, существование которого было доказано К. Гауссом, называется арифметико-геометрическим Средние чисел а и b; он важен в теории эллиптических функций.
3) Средним значением функции называется любое число, заключённое между наименьшим и наибольшим её значениями. В дифференциальном и интегральном исчислении имеется ряд «теорем о среднем», устанавливающих существование таких точек, в которых функция или её производная получает то или иное среднее значение. Наиболее важной теоремой о Средние в дифференциальном исчислении является теорема Лагранжа (теорема о конечном приращении): если f (x) непрерывна на отрезке [а, b] и дифференцируема в интервале (а, b), то существует точка с, принадлежащая интервалу (а, b), такая, что f (b) — f (a) = (b—a) f’(c). В интегральном исчислении наиболее важной теоремой о Средние является следующая: если f (x) непрерывна на отрезке [а, b], а j(x) сохраняет постоянный знак, то существует точка с из интервала (а, b) такая, что
Статья про "Средние" в Большой Советской Энциклопедии была прочитана 452 раз |
TOP 20
|
|||||||