БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
ТригонометрияОпределение "Тригонометрия" в Большой Советской ЭнциклопедииТригонометрия (от греч. trígōnon - треугольники ¼метрия), раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Тригонометрия делится на плоскую, или прямолинейную, и сферическую тригонометрию. Теория тригонометрических функций (гониометрия) и её приложения к решению плоских прямоугольных и косоугольных треугольников изучаются в средней школе.
Основные формулы плоской Тригонометрия Пусть а, b, с - стороны треугольника, А, В, С - противолежащие им углы (А+В+С = p), ha, hb, hc - высоты, 2p - периметр, S - площадь, 2R - диаметр окружности, описанной около треугольника. Теорема синусов:
Плоская Тригонометрия начала развиваться позже сферической, хотя отдельные теоремы её встречались и раньше. Например, 12-я и 13-я теоремы второй книги «Начал» Евклида (3 в. дон. э.) выражают по существу теорему косинусов. Плоская Тригонометрия получила развитие у аль-Баттани (2-я половина 9 - начало 10 вв.), Абу-ль-Вефа (10 в.), Бхаскара (12 в.) и Насирэддина Туси (13 в.), которым была уже известна теорема синусов. Теорема тангенсов была получена Региомонтаном (15 в.). Дальнейшие работы в области Тригонометрия принадлежат Н. Копернику (1-я половина 16 в.), Тригонометрия Браге (2-я половина 16 в.), Ф. Виету (16 в.), И. Кеплеру (конец 16 - 1-я половина 17 вв.). Современный вид Тригонометрия получила в работах Л. Эйлера (18 в.).
Статья про "Тригонометрия" в Большой Советской Энциклопедии была прочитана 490 раз |
TOP 20
|
|||||||