Ферриты

Определение "Ферриты" в Большой Советской Энциклопедии

Величины и направления векторов намагниченности катионов
Ферриты, химические соединения окиси железа Fe2O3 с окислами других металлов. У многих Ферриты сочетаются высокая намагниченность и полупроводниковые или диэлектрические свойства, благодаря чему они получили широкое применение как магнитные материалы в радиотехнике, радиоэлектронике, вычислительной технике.



Ферриты-шпинели (кристаллическая структура)
В состав Ферриты входят анионы кислорода O2-, образующие остов их кристаллической решётки; в промежутках между ионами кислорода располагаются катионы Fe3+, имеющие меньший радиус, чем анионы O2-, и катионы Mek+ металлов, которые могут иметь радиусы различной величины и разные валентности k. Существующее между катионами и анионами кулоновское (электростатическое) взаимодействие приводит к формированию определённой кристаллической решётки и к определённому расположению в ней катионов. В результате упорядоченного расположения катионов Fe3+ и Mek+ Ферриты обладают ферримагнетизмом и для них характерны достаточно высокие значения намагниченности и точек Кюри. Различают Ферриты-шпинели, Ферриты-гранаты, ортоферриты и гекса ферриты.


Ферриты-шпинел и имеют структуру минерала шпинели с общей формулой MeFe2O4, где Me – Ni2+, Co2+, Fe2+, Mn2+, Mg2+, Li1+, Cu2+. Элементарная ячейка Ферриты-шпинели представляет собой куб, образуемый 8 молекулами MeOFe2O3 и состоящий из 32 анионов O2-, между которыми имеется 64 тетраэдрических (А) и 32 октаэдрических (В) промежутков, частично заселённых катионами Fe3+ и Me2+ (рис. 1). В зависимости от того, какие ионы и в каком порядке занимают промежутки А и В, различают прямые шпинели (немагнитные) и обращенные шпинели (ферримагнитные). В обращенных шпинелях половина ионов Fe3+ находится в тетраэдрических промежутках, а в октаэдрических промежутках – 2-я половина ионов Fe3+ и ионы Me2+. При этом намагниченность MA октаэдрической подрешётки больше тетраэдрической MB, что приводит к возникновению ферримагнетизма.



Ферриты-гранаты редкоземельных элементов R3+ (Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Sm3+, Eu3+) и иттрия Y3+ имеют кубическую структуру граната с общей формулой R3Fe5O12. Элементарная ячейка Ферриты-гранатов содержит 8 молекул R3Fe5O12; в неё входит 96 ионов O2-, 24 иона R3+ и 40 ионов Fe3+. В Ферриты-гранатах имеется три типа промежутков, в которых размещаются катионы: большая часть ионов Fe3+ занимает тетраэдрические (d), меньшая часть ионов Fe3+ – октаэдрические (я) и ионы R3+ додекаэдрические места (с). Соотношение величин и направлений намагниченностей катионов, занимающих промежутки d, а, с, показано на рис. 2.


Ортоферритами называют группу Ферриты с орторомбической кристаллической структурой. Их образуют редкоземельные элементы или иттрий по общей формуле RFeO3-. Ортоферриты изоморфны минералу перовскиту (см. Изоморфизм). По сравнению с Ферриты-гранатами они имеют небольшую намагниченность, т.к. обладают неколлинеарным антиферромагнетизмом (слабым ферромагнетизмом) и только при очень низких температурах (порядка нескольких К и ниже) – ферримагнетизмом.


Ферриты гексагональной структуры (гексаферриты) имеют общую формулу MeO (Fe2O3), где Me – ионы Ba, Sr или Pb. Элементарная ячейка кристаллической решётки гексаферритов состоит из 38 анионов O2-, 24 катионов Fe3+ и 2 катионов Me2+ (Ba2+, Sr2+ или Pb2+). Ячейка построена из двух шпинельных блоков, разделённых между собой ионами Pb2+ (Ba2+ или Sr2+), O2- и Fe3+. Если окиси железа и бария спекать совместно с соответствующими количествами следующих металлов: Mn, Cr, Со, Ni, Zn, то можно получить ряд новых оксидных ферримагнетиков.


Некоторые гексаферриты обладают высокой коэрцитивной силой и применяются для изготовления постоянных магнитов. Большинство Ферриты со структурой шпинели, феррит-гранат иттрия и некоторые гексаферриты используются как магнитно-мягкие материалы.


  При введении примесей и создании нестехеометричности состава (переменности состава как по катионам, так и по кислороду) электрическое сопротивление Ферриты изменяется в широких пределах. Ферриты в полупроводниковой технике не применяются из-за низкой подвижности носителей тока. Синтез поликристаллических Ферриты осуществляется по технологии изготовления керамики. Из смеси исходных окислов прессуют изделия нужной формы, которые подвергают затем спеканию при температурах от 900 °С до 1500 °С на воздухе или в специальных газовых средах.
Монокристаллические Ферриты выращиваются методами Чохральского, Вернейля и др. (см. Монокристалл).
 


  Лит.: Рабкин Л. И., Соскин С. А., Эпштейн Б. Ш., Ферриты. Строение, свойства, технология производства, Л., 1968; Смит Я., Вейн Х. Ферриты, пер. с англ., М., 1962; Гуревич А. Г., Магнитный резонанс в ферритах и антиферромагнетиках, М., 1973.
  К. П. Белов.



"БСЭ" >> "Ф" >> "ФЕ" >> "ФЕР" >> "ФЕРР"

Статья про "Ферриты" в Большой Советской Энциклопедии была прочитана 89 раз
Пицца в сковороде
Английская картошка фри

TOP 20