БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
ЯкобианОпределение "Якобиан" в Большой Советской Энциклопедии
Якобиан, функциональный определитель ½aik½1n с элементами , где yi = fi (X1,..., Xn), l £ i £ n, — функции, имеющие непрерывные частные производные в некоторой области А; обозначение:
задаёт отображение области D, лежащей на плоскости x1, x2, на часть плоскости y1, y2. Роль Якобиан для этого отображения во многом аналогична роли производной для функции одной переменной. Например, абсолютное значение Якобиан в некоторой точке М равно коэффициенту искажения площадей в этой точке (т. е. пределу отношения площади образа окрестности точки М к площади самой окрестности, когда размеры окрестности стремятся к нулю). Якобиан в точке М положителен, если отображение (1) не меняет ориентации в окрестности точки М, и отрицателен в противоположном случае. Если Якобиан не обращается в нуль в области D и j (y1, у2) — функция, заданная в области D1 (образе D), то
(формула замены переменных в двойном интеграле). Аналогичная формула имеет место для кратных интегралов. Если Якобиан отображения (1) не обращается в нуль в области Д, то существует обратное отображение
(аналог формулы дифференцирования обратной функции). Это утверждение находит многочисленные применения в теории неявных функций. Для возможности явного выражения в окрестности точки М (x1(0),..., xn (0, y1(0),..., ym (0)) функций y1,..., ут, неявно заданных уравнениями Fk (x1,..., xn, y1,..., ум) = 0, (2)
Статья про "Якобиан" в Большой Советской Энциклопедии была прочитана 650 раз |
TOP 20
|
|||||||