БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Волновое уравнениеОпределение "Волновое уравнение" в Большой Советской Энциклопедии
Волновое уравнение, дифференциальное уравнение с частными производными, описывающее процесс распространения возмущений в некоторой среде. В случае малых возмущений и однородной изотропной среды Волновое уравнение имеет вид:
где х, у, z — пространственные переменные, t — время, u = u (х, у, z) — искомая функция, характеризующая возмущение в точке (х, у, z) в момент t, а — скорость распространения возмущения. Волновое уравнение является одним из основных уравнений математической физики и широко используется в приложениях. Если u зависит только от двух (одной) пространственных переменных, то Волновое уравнение упрощается и называется двумерным (одномерным). Волновое уравнение допускает решение в виде «расходящейся сферической волны»:
(где δ — дельта-функция), дающее процесс распространения возмущения, произведённого мгновенным точечным источником (действовавшим в начале координат при t = 0). Образно говоря, элементарная волна представляет собой «бесконечный всплеск» на окружности r = at, удаляющийся от начала координат со скоростью а с постепенным уменьшением интенсивности. При помощи наложения элементарных волн можно описать процесс распространения произвольного возмущения.
Ж. Д"Аламбер предложил (1747) метод решения этого Волновое уравнение в виде наложения прямой и обратной волн: u = f (x - at) + g (x + at), а Л. Эйлер (1748) установил, что функции f и g определяются заданием так называемых начальных условий.
Статья про "Волновое уравнение" в Большой Советской Энциклопедии была прочитана 621 раз |
TOP 20
|
|||||||