БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Дифференциальные уравненияОпределение "Дифференциальные уравнения" в Большой Советской Энциклопедии
Следующие два простых примера могут служить иллюстрацией к сказанному.
DT = -kTDt, где k — постоянный коэффициент. При математической обработке этой физической задачи считают, что выполняется точно соответствующее предельное соотношение между дифференциалами dT = -kTdt, (1) т. е. имеет место Дифференциальные уравнения T" = -kT,
Т = Ce-kt, (2) где С постоянно. Сама формула (2) с произвольной постоянной С называется общим решением уравнения (1).
mх" (t) = – kx (t). (3) Его решение имеет вид: и показывает, что тело будет совершать гармонические колебания (рис. 1, в).
есть Дифференциальные уравнения с частными производными 2-го порядка.
F (x, у, у") = 0 (А) между независимым переменным х, искомой функцией у и её производной Если уравнение (А) может быть разрешено относительно производной, то получается уравнение вида y" = f (x, у). (Б)
Многие вопросы теории Дифференциальные уравнения проще рассматривать для таких разрешённых относительно производной уравнений, предполагая функцию f (x, y) однозначной.
Геометрическая интерпретация дифференциальных уравнений. Пусть у = у (х) есть решение уравнения (Б). Геометрически это значит, что в прямоугольных координатах касательная к кривой у = у (х) имеет в каждой лежащей на ней точке М (х, у) угловой коэффициент k = f (x, у). Т. о., нахождение решений у = у (х) геометрически сводится к такой задаче: в каждой точке некоторой области на плоскости задано «направление», требуется найти все кривые, которые в любой своей точке М имеют направление, заранее сопоставленное этой точке. Если функция f (x, у) непрерывна, то это направление меняется при перемещении точки М непрерывно, и можно наглядно изобразить поле направлений, проведя в достаточно большом числе достаточно густо расположенных по всей рассматриваемой области точек короткие чёрточки с заданным для этих точек направлением. На рис. 2 это выполнено для уравнения у" = у2. Рисунок позволяет сразу представить себе, как должны выглядеть графики решения — так называемые интегральные кривые Дифференциальные уравнения Вычисление показывает, что общее решение данного уравнения есть
График любой однозначной функции у = у (х) пересекает каждую прямую, параллельную оси Оу, только один раз. Таковы, следовательно, интегральные кривые любого уравнения (Б) с однозначной непрерывной функцией в правой части. Новые возможности для вида интегральных кривых открываются при переходе к уравнениям (В). При помощи пары непрерывных функций Р (х, у) и Q (x, у) можно задать любое непрерывное «поле направлений». Задача интегрирования уравнений (В) совпадает с чисто геометрической (не зависящей от выбора осей координат) задачей разыскания интегральных кривых по заданному на плоскости полю направлений. Следует заметить, что тем точкам (x0, у0), в которых обе функции Р (х, у) и Q (x, у) обращаются в нуль, не соответствует какое-либо определённое направление. Такие точки называются особыми точками уравнения (В).
хотя, строго говоря, правая часть этого последнего уравнения теряет смысл при х = 0 и у = 0. Соответствующие поле направлений и семейство интегральных кривых, являющихся в этом случае окружностями х2 + у2 = С, изображены на рис. 3. Начало координат (х = 0, у = 0) — особая точка данного уравнения. Интегральными кривыми уравнения Начальные условия. Геометрическая интерпретация Дифференциальные уравнения 1-го порядка приводит к мысли, что через каждую внутреннюю точку М области G с заданным непрерывным полем направлений можно провести одну вполне определённую интегральную кривую.
В отношении существования интегральной кривой сформулированная гипотеза оказывается правильной. Доказательство этого предложения принадлежит Дж. Пеано. В отношении же единственности интегральной кривой, проходящей через заданную точку, высказанная выше гипотеза оказывается, вообще говоря, ошибочной. Уже для такого простого уравнения, как у которого правая часть непрерывна во всей плоскости, интегральные кривые имеют вид, изображённый на рис. 5. Единственность интегральной кривой, проходящей через заданную точку, нарушается здесь во всех точках оси Ox.
Единственность, т. е. однозначное определение интегральной кривой условием её прохождения через заданную точку, имеет место для уравнений (Б) с непрерывной правой частью при том дополнительном условии, что функция f (х, у) имеет в рассматриваемой области ограниченную производную по у.
С аналитической стороны теоремы существования и единственности для уравнения вида (Б) обозначают следующее: если выполнены надлежащие условия [например, функция f (x, y) непрерывна и имеет ограниченную производную по у], то задание для «начального» значения x0 независимого переменного х «начального» значения у0 = у (x0) функции у (х) выделяет из семейства всех решений у (х) одно определённое решение. Например, если для рассмотренного выше уравнения (1) потребовать, чтобы в начальный момент времени t0 = 0 температура тела была равна «начальному» значению Т0, то из бесконечного семейства решений (2) выделится одно определённое решение, удовлетворяющее заданным начальным условиям:
Этот пример типичен: в механике и физике Дифференциальные уравнения обычно определяют общие законы течения какого-либо явления; однако, чтобы получить из этих законов определённые количественные результаты, надо присоединить к ним сведения о начальном состоянии изучаемой физической системы в некоторый определённый выбранный в качестве «начального» момент времени t0. где x0 и у0 входят как параметры, функция же j (х; x0, y0) трёх переменных х, x0 и y0 однозначно определяется самим уравнением (Б). Важно отметить, что при достаточно малом изменении поля (правой части Дифференциальные уравнения) функция j(х; x0, у0) меняется сколь угодно мало на конечном промежутке изменения переменного х — имеется непрерывная зависимость решения от правой части Дифференциальные уравнения Если правая часть f (x, у) Дифференциальные уравнения непрерывна и её производная по у ограничена (или удовлетворяет условию Липшица), то имеет место также непрерывность j(х; х0, у0) по x0 и y0.
Если в окрестности точки (х0, у0) для уравнения (Б) выполнены условия единственности, то все интегральные кривые, проходящие через достаточно малую окрестность точки (x0, у0), пересекают вертикальную прямую х = х0 и определяются ординатой у = С своей точки пересечения с этой прямой (см. рис. 6). Т. о., все эти решения содержатся в семействе с одним параметром С: В окрестности точек, в которых нарушаются условия единственности, картина может быть сложнее. Весьма сложен и вопрос о поведении интегральных кривых «в целом», а не в окрестности точки (x0, у0).
Общий интеграл. Особые решения. Естественно поставить обратную задачу: задано семейство кривых, зависящих от параметра С, требуется найти Дифференциальные уравнения, для которого кривые заданного семейства служили бы интегральными кривыми. Общий метод для решения этой задачи заключается в следующем: считая семейство кривых на плоскости хОу заданным при помощи соотношения
и из двух уравнений (6) и (7) или (6) и (8) исключают параметр С. Если данное Дифференциальные уравнения получается таким образом из соотношения (6), то это соотношение называется общим интегралом заданного Дифференциальные уравнения Одно и то же Дифференциальные уравнения может иметь много различных общих интегралов. После нахождения для заданного Дифференциальные уравнения общего интеграла оказывается необходимым, вообще говоря, ещё исследовать, не имеет ли Дифференциальные уравнения дополнительных решений, не содержащихся в семействе интегральных кривых (6).
где -¥ £ C1 £ C2 £ +¥ (рис. 7). Оно зависит от двух параметров C1 и C2, но составляется из кусков кривых однопараметрического семейства (9) и куска особого решения (11). огибающая прямые (12) (рис. 8). Картина, наблюдавшаяся в рассмотренном примере, типична; особые интегральные кривые обычно являются огибающими семейства интегральных кривых, получаемых из общего решения.
Дифференциальные уравнения высших порядков и системы дифференциальных уравнений. Дифференциальные уравнения n-го порядка с одной неизвестной функцией у (х) независимого переменного х записывают так:
Аналогичным образом сводятся к системам уравнений 1-го порядка и системы уравнений высших порядков. В механике сведение систем уравнений 2-го порядка к системе из удвоенного числа уравнений 1-го порядка имеет простой механический смысл. Например, система трёх уравнений движения материальной точки
Наибольшее значение имеют системы, в которых число уравнений равно числу неизвестных функций. Система из n уравнений 1-го порядка с n неизвестными функциями, разрешённая относительно производных, имеет вид:
Решением системы Дифференциальные уравнения (а) называется система функций x1(t), x2(t), ..., xn (t), которая при подстановке в уравнения (а) обращает их в тождества. Часто встречаются системы вида (а), в которых правые части не зависят от t. В этом случае изучение системы (а) в основном сводится к изучению системы из (n - 1)-го уравнения, которую целесообразно записывать в симметричной форме
не предрешая вопроса о том, от какого из переменных х1, x2,..., xn мыслятся зависящими остающиеся n - 1 переменных. Считая х = (x1, x2,..., xn) вектором, можно записать систему (а) в виде одного векторного уравнения: что позволяет широко пользоваться при изучении систем (а) аналогией с теорией одного уравнения 1-го порядка вида (Б). В частности, оказывается, что для систем (а) сохраняют силу основные результаты относительно существования и единственности решения задачи с начальными условиями: если в окрестности точки (t0, х10, x20, ..., xn0) все функции Fi непрерывны по совокупности переменных t, x1, x2, ..., xn и имеют ограниченные производные по переменным x1, x2, ..., xn, то задание начальных значений xi (t0) = xi0, i = 1, 2, ..., n, определяет одно, вполне определённое, решение системы (а). Этим объясняется то, что, вообще говоря, решение систем из n уравнений 1-го порядка с n неизвестными функциями зависит от n параметров. Для приведённых выше конкретных примеров Дифференциальные уравнения их общее решение удаётся выразить при помощи элементарных функций. Типы Дифференциальные уравнения, допускающие такого рода решение, детально изучаются. Часто придерживаются более общей точки зрения, считая Дифференциальные уравнения «решённым», если искомая зависимость между переменными (и входящими в общее решение параметрами c1, c2, ...) может быть выражена при помощи элементарных функций и одной или нескольких операций взятия неопределённого интеграла («решение выражено в квадратурах»).
Большой общностью обладают способы нахождения решений при помощи разложения их в степенные ряды. Например, если правые части уравнений (а) в окрестности точки (t0, x10, x20, ..., xn0) голоморфны (см. Аналитические функции), то решение соответствующей начальной задачи выражается функциями xi (t), разлагающимися в степенные ряды: коэффициенты которых можно найти последовательным дифференцированием правых частей Дифференциальные уравнения (а) и сопоставлением коэффициентов при одинаковых степенях в левых и правых частях этих уравнений. Из специальных типов Дифференциальные уравнения особенно хорошо разработана теория линейных Дифференциальные уравнения и систем линейных Дифференциальные уравнения (см. Линейные дифференциальные уравнения). Для линейных Дифференциальные уравнения сравнительно просто решаются также вопросы «качественного» поведения интегральных кривых, т. е. их поведение во всей области задания Дифференциальные уравнения Для нелинейных Дифференциальные уравнения, где нахождение общего решения особенно сложно, вопросы качественной теории Дифференциальные уравнения приобретают иногда даже доминирующее значение. После классических работ А. М. Ляпунова ведущую роль в качественной теории Дифференциальные уравнения играют работы советских математиков, механиков и физиков. В связи с этой теорией см. Динамическая система, Особая точка, Устойчивость, Предельный цикл. Большое значение имеет аналитическая теория Дифференциальные уравнения, изучающая решения Дифференциальные уравнения с точки зрения теории аналитических функций, т. е. интересующаяся, например, расположением их особых точек в комплексной плоскости и т.п. Наряду с рассмотренной выше начальной задачей, в которой задаются значения искомых функций (а в случае уравнений старших порядков и их производных) в одной точке (при одном значении независимого переменного), находят широкое применение краевые задачи.
Дифференциальные уравнения с частными производными. Типичной особенностью Дифференциальные уравнения с частными производными и систем Дифференциальные уравнения с частными производными является то, что для однозначного определения частного решения здесь требуется задание не значений того или иного конечного числа параметров, а некоторых функций. Например, общим решением уравнения
где f и g — произвольные функции. Т. о., Дифференциальные уравнения (16) лишь в той мере ограничивает произвол в выборе функции двух переменных u (х, у), что её удаётся выразить через две функции f (z) и g (v) от одного переменного, которые остаются [если в дополнение к уравнению (16) не дано каких-либо «начальных» или «краевых» условий] произвольными.
где независимыми переменными являются t, x1,..., xn, а u1,..., um суть функция от этих независимых переменных, может служить задача Коши: по заданным при каком-либо t = t0 значениям В теории Дифференциальные уравнения с частными производными порядка выше первого и систем Дифференциальные уравнения с частными производными рассматриваются как задачи типа Коши, так и ряд краевых задач.
При постановке и решении краевых задач для Дифференциальные уравнения с частными производными порядка выше первого существенное значение имеет тип уравнения. В качестве примера можно привести классификацию Дифференциальные уравнения с частными производными 2-го порядка с одной неизвестной функцией z (х, у) от двух переменных: Лит.: Обыкновенные Дифференциальные уравнения Степанов В. В., Курс дифференциальных уравнений, 8 изд., М., 1959; Петровский И. Г., Лекции по теории обыкновенных дифференциальных уравнений, 5 изд., М., 1964; Понтрягин Л. С., Обыкновенные дифференциальные уравнения, 2 изд., М., 1965; Камке Э., Справочник по обыкновенным дифференциальным уравнениям, пер. с нем., 3 изд., М., 1965; Филиппов А. Ф., Сборник задач по дифференциальным уравнениям, 2 изд., М., 1965.
Дифференциальные уравнения с частными производными. Петровский И. Г., Лекции об уравнениях с частными производными, 3 изд., М., 1961; Тихонов А. Н., Самарский А. А., Уравнения математической физики, 3 изд., М., 1966; Соболев С. Л., Уравнения математической физики, 4 изд., М., 1966; Смирнов М. М., Задачи по уравнениям математической физики, 5 изд., М., 1968.
Статья про "Дифференциальные уравнения" в Большой Советской Энциклопедии была прочитана 1255 раз |
TOP 20
|
|||||||||||||||||||||||