БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Конечных разностей исчислениеОпределение "Конечных разностей исчисление" в Большой Советской Энциклопедии
Конечных разностей исчисление, раздел математики, в котором изучаются функции при дискретном (прерывном) изменении аргумента, в отличие от дифференциального исчисления и интегрального исчисления, где аргумент предполагается непрерывно изменяющимся. Конечными разностями «вперёд» для последовательности значений y1= f (x1), y2 = f (x2),..., yk = f (xk),... функции f (x), соответствующих последовательности значений аргумента x0,..., xk,,... (xk = х0 + kh, h — постоянное, k — целое), называют выражения:
При интерполяции часто пользуются т. н. центральными разностями dny, которые вычисляются при нечётном n в точках х = xi+1l2h, а при чётном n в точках х = xi по формулам
Если значения аргумента не составляют арифметической прогрессии, т. е. xk+1 - xk не есть тождественно постоянная, то вместо конечных разностей пользуются разделёнными разностями, последовательно определяемыми по формулам Связь между конечными разностями и производными устанавливается формулой Dnyk = f (n)(), где xk££xk+n. Существует полная аналогия между ролью конечных разностей в теории функций дискретного аргумента и ролью производных в теории функций непрерывного аргумента; конечные разности являются удобным аппаратом при построении ряда разделов численного анализа: интерполирование функций, численное дифференцирование и интегрирование, численные методы решения дифференциальных уравнений.
Например, для приближённого решения дифференциального уравнения (обыкновенного или с частными производными) часто заменяют входящие в него производные соответствующими разностями, деленными на степени разностей аргументов, и решают полученное таким способом разностное уравнение (одномерное или многомерное). f (x) = С1l1х + C2l2x +... + Cnlnx,
где C1, C2,..., Cn — произвольные постоянные (здесь предполагается, что среди чисел l1, l2,..., ln нет равных).
Статья про "Конечных разностей исчисление" в Большой Советской Энциклопедии была прочитана 539 раз |
TOP 20
|
|||||||