БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Математические развлечения и игрыОпределение "Математические развлечения и игры" в Большой Советской Энциклопедии
Полное математическое обоснование имеется также у таких М. р. и и., как вычерчивание фигур одним росчерком, лабиринты, комбинированные задачи на шахматной доске и другие. Большая группа М. р. и и. связана с поисками оригинальных и красивых решений задач, допускающих практически неисчерпаемое или даже бесконечное множество решений. К числу таких развлечений относится, например, «составление паркетов» — задача о заполнении плоскости правильно чередующимися фигурами одного и того же вида (например, одноимёнными правильными многоугольниками) или нескольких данных видов. Если «двухцветный квадратный паркет» с осями симметрии А’ А и B’B (см. рис. 2) составляется из 4n2 равных квадратов, каждый из которых разбит диагональю на белую и чёрную половины, то число различных паркетов равно 4n2 (это число быстро растет при возрастании n). Очень большое, до сих пор точно не установленное число решений имеют также: задача Эйлера о шахматном коне — обойти ходом коня шахматную доску, побывав на каждой клетке по одному разу, и задача о составлении многоклеточных магических квадратов. В подобного рода задачах интересуются обычно определением числа решений, разработкой методов, дающих сразу большие группы решений. Математическое содержание ряда других М. р. и и. — в установлении наименьшего числа операций, необходимых для достижения поставленной цели. К таким развлечениям относятся: задачи типа «переправ», «размещений» или игры, аналогичные игре «ханойская башня», суть которой в подсчёте числа ходов, необходимых для перенесения пластинок со столбика А (см. рис. 3) на столбик С, пользуясь столбиком В, если за один ход можно переносить лишь одну пластинку с любого столбика на любой другой, но нельзя класть большую пластинку выше меньшей. М. р. и и. пользовались вниманием многих крупных учёных [Леонардо Пизанский (13 век), Н. Тарталья (16 век), Дж. Кардано (16 век), Г. Монж (2-я половина 18 — начало 19 века), Л. Эйлер (18 век) и другие]. Сборники М. р. и и. начали появляться с 17 века. Содействуя повышению интереса учащихся к математике, развитию сообразительности, настойчивости и внимания, М. р. и и. применяются также и в педагогическом процессе. В России это нашло отражение уже в «Арифметике» Л. Ф. Магницкого (1703) и даже в математических рукописях 17 века. Лит.: Игнатьев Е. И., В царстве смекалки или арифметика для всех, 2 изд., кн. 1—3, М. — Л., 1924 — 25; Кордемский Б. А., Математическая смекалка, 8 изд., М., 1965; Перельман Я. И., Живая математика, 9 изд., М., 1970: его же, Занимательная арифметика, 9 изд., М., 1959; его же, Занимательная алгебра, 12 изд., М., 1970; его же, Занимательная геометрия, 11 изд., М., 1959; Шуберт Г., Математические развлечения и игры, перевод с немецкого, Одесса, 1911; Арене В., Математические игры, перевод с немецкого, Л. — М., 1924; Гарднер М., Математические чудеса и тайны. Математические фокусы и головоломки, перевод с английского, 2 изд., М., 1967; его же, Математические досуги, перевод с английского, М., 1972.
Статья про "Математические развлечения и игры" в Большой Советской Энциклопедии была прочитана 447 раз |
TOP 20
|
|||||||||||||