БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Непрерывная функцияОпределение "Непрерывная функция" в Большой Советской Энциклопедии
является функцией разрывной при любом целом значении и непрерывной при всех других значениях (рис. 1), причём в целочисленных точках она непрерывна справа.
есть Непрерывная функция для всех значений х, кроме нечётных кратных p/2, при которых cosх обращается в нуль.
Функция, непрерывная на отрезке, ограничена на нём и достигает на этом отрезке наибольшего и наименьшего значения (см. Наибольшее и наименьшее значения функций). Кроме того, она принимает на этом отрезке все значения, лежащие между её наименьшим и наибольшим значениями. Функции, непрерывные на отрезке, обладают свойством равномерной непрерывности. Всякая функция, непрерывная на некотором отрезке, интегрируема на нём, т. е. является производной другой Непрерывная функция Однако не всякая Непрерывная функция сама имеет производную. Геометрически это означает, что график Непрерывная функция не обязательно обладает в каждой точке определённым направлением (касательной); это может произойти, например, потому, что график имеет угловую точку (рис.2, функция у = |x|), или потому, что он совершает в любой близости точки О бесконечно много колебаний между двумя пересекающимися прямыми (рис. 3, функция Существуют Непрерывная функция, не имеющие производной ни в одной точке (первый пример такого рода был найден Б. Больцано). Представление о графике подобной функции даёт рис. 4, где изображены первые этапы построения, состоящего в неограниченно продолжающейся замене средней трети каждого прямолинейного отрезка двузвенными ломаными; соотношения длин подбираются так, чтобы в пределе получить Непрерывная функция Функция F (x, у, z,...) нескольких переменных, определённая в некоторой окрестности точки (x0, y0, z0,...), называется непрерывной в этой точке, если для любого e > 0 можно указать такое d > О, что при одновременном выполнении неравенств: |x — x0| < d, |у — у0| < d, |z — z0| < d,... выполняется также и неравенство: IF (x, у, z,...) — F (x0, y0, z0,...)| < e.
Такая функция будет непрерывной по отношению к каждому аргументу в отдельности (если остальным аргументам приданы определённые числовые значения). Обратное, однако, неверно: функция F (x:, у, z,...), непрерывная по каждому аргументу в отдельности, может и не быть Непрерывная функция этих аргументов. Простейший пример этого даёт функция F (x, у), равная xy/(x2 + y2), если x2 + y2 ¹ 0, и равная 0 при x = у = 0. Она непрерывна по x при любом фиксированном значении y по y — при любом фиксированном значении х. В частности, она непрерывна по x при у = 0 и по y при x = 0. Если же положить, например, у = х ¹ 0, то значение функции будет оставаться равным x2/(x2 + y2) = 1/2, т. е. нельзя будет указать такого числа d > 0, чтобы при одновременном выполнении неравенств |х| < d, |у| < d выполнялось неравенство |ху/(х2 + y2)| < e. На Непрерывная функция нескольких переменных распространяются все основные теоремы, относящиеся к Непрерывная функция одного переменного.
Статья про "Непрерывная функция" в Большой Советской Энциклопедии была прочитана 599 раз |
TOP 20
|
|||||||||||||||