Фазированная антенная решётка

Определение "Фазированная антенная решётка" в Большой Советской Энциклопедии


Активные фазированные антенные решётки (структурные схемы)
Фазированная антенная решётка (ФАР), фазированная решётка, антенная решётка с управляемыми фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами (излучателями). Управление фазами (фазирование) позволяет: формировать (при весьма разнообразных расположениях излучателей) необходимую диаграмму направленности (ДН) ФАР (например, остронаправленную ДН – луч); изменять направление луча неподвижной ФАР и т. о. осуществлять быстрое, в ряде случаев практически безынерционное, сканирование – качание луча (см., например, Сканирование в радиолокации); управлять в определённых пределах формой ДН – изменять ширину луча, интенсивность (уровни) боковых лепестков и т.п. (для этого в ФАР иногда осуществляют также управление и амплитудами волн отдельных излучателей). Эти и некоторые другие свойства ФАР, а также возможность применять для управления ФАР современные средства автоматики и ЭВМ обусловили их перспективность и широкое использование в радиосвязи, радиолокации, радионавигации, радиоастрономии и т.д. ФАР, содержащие большое число управляемых элементов (иногда 104 и более), входят в состав различных наземных (стационарных и подвижных), корабельных, авиационных и космических радиоустройств. Ведутся интенсивные разработки в направлении дальнейшего развития теории и техники ФАР и расширения области их применения.


Возбуждение фазированных антенных решёток (типовые схемы)
Структура ФАР. Формы, размеры и конструкции современных ФАР весьма разнообразны; их разнообразие определяется как типом используемых излучателей, так и характером их расположения (рис. 1). Сектор сканирования ФАР определяется ДН её излучателей. В ФАР с быстрым широкоугольным качанием луча обычно используются слабонаправленные излучатели: симметричные и несимметричные вибраторы, часто с одним или несколькими рефлекторами (например, в виде общего для всей ФАР зеркала); открытые концы радиоволноводов, щелевые, рупорные, спиральные, диэлектрические стержневые, логопериодические и др. антенны. Иногда большие по размерам ФАР составляют из отдельных малых ФАР (модулей); ДН последних ориентируется в направлении основного луча всей ФАР. В ряде случаев, например когда допустимо медленное отклонение луча, в качестве излучателей используют остронаправленные антенны с механическим поворотом (например, т. н. полноповоротные зеркальные); в таких ФАР отклонение луча на большой угол выполняют посредством поворота всех антенн и фазирования излучаемых ими волн; фазирование этих антенн позволяет также осуществлять в пределах их ДН быстрое качание луча ФАР.



Фазированные антенные решётки (примеры)
В зависимости от требуемой формы ДН и необходимого пространственного сектора сканирования в ФАР применяют различное взаимное расположение элементов: вдоль линии (прямой или дуги); по поверхности (например, плоской – в т. н. плоских ФАР; цилиндрической; сферической) или в заданном объёме (объёмные ФАР). Иногда форма излучающей поверхности ФАР – раскрыва (см. Излучение и приём радиоволн), определяется конфигурацией объекта, на котором устанавливается ФАР (например, формой ИСЗ). ФАР с формой раскрыва, подобной форме объекта, иногда называются конформными. Широко распространены плоские ФАР; в них луч может сканировать от направления нормали к раскрыву (как в синфазной антенне) до направления вдоль раскрыва (как в бегущей волны антенне). Коэффициент направленного действия (КНД) плоской ФАР при отклонении луча от нормали к раскрыву уменьшается. Для обеспечения широкоугольного сканирования (в больших пространственных углах – вплоть до 4(стер) без заметного снижения КНД используют ФАР с неплоским (например, сферическим) раскрывом или системы плоских ФАР, ориентированных в различных направлениях. Сканирование в этих системах осуществляется посредством возбуждения соответственно ориентированных излучателей и их фазирования.


Фазированные антенные решётки (структурные схемы)
По характеру распределения излучателей в раскрыве различают эквидистантные и неэквидистантные ФАР. В эквидистантных ФАР расстояния между соседними элементами одинаковы по всему раскрыву. В плоских эквидистантных ФАР излучатели чаще всего располагают в узлах прямоугольной решётки (прямоугольное расположение) или в узлах треугольной сетки (гексагональное расположение). Расстояния между излучателями в эквидистантных ФАР обычно выбирают достаточно малыми (часто меньше рабочей длины волны), что позволяет формировать в секторе сканирования ДН с одним главным лепестком (без побочных дифракционных максимумов – т. н. паразитных лучей) и низким уровнем боковых лепестков; однако для формирования узкого луча (т. е. в ФАР с большим раскрывом) необходимо использовать большое число элементов. В неэквидистантных ФАР элементы располагают на неодинаковых расстояниях друг от друга (расстояние может быть, например, случайной величиной). В таких ФАР даже при больших расстояниях между соседними излучателями можно избежать образования паразитных лучей и получать ДН с одним главным лепестком. Это позволяет в случае больших раскрывов сформировать очень узкий луч при сравнительно небольшом числе элементов; однако такие неэквидистантные ФАР с большим раскрывом при малом числе излучателей имеют более высокий уровень боковых лепестков и, соответственно, более низкий КНД, чем ФАР с большим числом элементов. В неэквидистантных ФАР с малыми расстояниями между излучателями при равных мощностях волн, излучаемых отдельными элементами, можно получать (в результате неравномерного распределения плотности излучения в раскрыве антенны) ДН с более низким уровнем боковых лепестков, чем в эквидистантных ФАР с таким же раскрывом и таким же числом элементов.


Управление фазовыми сдвигами. По способу изменения фазовых сдвигов различают ФАР с электромеханическим сканированием, осуществляемым, например, посредством изменения геометрической формы возбуждающего радиоволновода (рис. 2, а); частотным сканированием, основанным на использовании зависимости фазовых сдвигов от частоты, например за счёт длины фидера между соседними излучателями (рис. 2, б) или дисперсии волн в радиоволноводе; с электрическим сканированием, реализуемым при помощи фазосдвигающих цепей или фазовращателей, управляемых электрическими сигналами (рис. 2, в) с плавным (непрерывным) или ступенчатым (дискретным) изменением фазовых сдвигов.


Наибольшими возможностями обладают ФАР с электрическим сканированием. Они обеспечивают создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. На СВЧ в современных ФАР широко используют ферритовые и полупроводниковые фазовращатели (с быстродействием порядка мксек и потерями мощности ~ 20%). Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных – каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР.


Особенности построения ФАР. Возбуждение излучателей ФАР (рис. 3) производится либо при помощи фидерных линий, либо посредством свободно распространяющихся волн (в т. н. квазиоптических ФАР), фидерные тракты возбуждения наряду с фазовращателями иногда содержат сложные электрические устройства (т. н. диаграммообразующие схемы), обеспечивающие возбуждение всех излучателей от нескольких входов, что позволяет создать в пространстве соответствующие этим входам одновременно сканирующие лучи (в многолучевых ФАР). Квазиоптические ФАР в основном бывают двух типов: проходные (линзовые), в которых фазовращатели и основные излучатели возбуждаются (при помощи вспомогательных излучателей) волнами, распространяющимися от общего облучателя, и отражательные – основной и вспомогательные излучатели совмещены, а на выходах фазовращателей установлены отражатели. Многолучевые квазиоптические ФАР содержат несколько облучателей, каждому из которых соответствует свой луч в пространстве. Иногда в ФАР для формирования ДН применяют фокусирующие устройства (зеркала, линзы). Рассмотренные выше ФАР иногда называются пассивными.


Наибольшими возможностями управления характеристиками обладают активные ФАР, в которых к каждому излучателю или модулю подключен управляемый по фазе (иногда и по амплитуде) передатчик или приёмник (рис. 4). Управление фазой в активных ФАР может производиться в трактах промежуточной частоты либо в цепях возбуждения когерентных передатчиков, гетеродинов приёмников и т.п. Таким образом, в активных ФАР фазовращатели могут работать в диапазонах волн, отличных от частотного диапазона антенны; потери в фазовращателях в ряде случаев непосредственно не влияют на уровень основного сигнала. Передающие активные ФАР позволяют осуществить сложение в пространстве мощностей когерентных электромагнитных волн, генерируемых отдельными передатчиками. В приёмных активных ФАР совместная обработка сигналов, принятых отдельными элементами, позволяет получать более полную информацию об источниках излучения.


В результате непосредственного взаимодействия излучателей между собой характеристики ФАР (согласование излучателей с возбуждающими фидерами, КНД и др.) при качании луча изменяются. Для борьбы с вредными последствиями взаимного влияния излучателей в ФАР иногда применяют специальные методы компенсации взаимной связи между элементами.


Перспективы развития ФАР. К наиболее важным направлениям дальнейшего развития теории и техники ФАР относятся: 1) широкое внедрение в радиотехнические устройства ФАР с большим числом элементов, разработка элементов новых типов, в частности для активных ФАР; 2) развитие методов построения ФАР с большими размерами раскрывов, в том числе неэквидистантных ФАР с остронаправленными антеннами, расположенными в пределах целого полушария Земли (глобальный радиотелескоп), 3) дальнейшая разработка методов и технических средств ослабления вредных влияний взаимной связи между элементами ФАР; 4) развитие теории синтеза и методов машинного проектирования ФАР; 5) разработка теории и внедрение в практику новых методов обработки информации, принятой элементами ФАР, и использования этой информации для управления


ФАР, в частности для автоматического фазирования элементов (самофазирующиеся ФАР) и изменения формы ДН, например понижения уровня боковых лепестков в направлениях на источники помех (адаптивные ФАР); 6) разработка методов управления независимым движением отдельных лучей в многолучевых ФАР.
Лит.: Вендик О. Г., Антенны с немеханическим движением луча, М., 1965; Сканирующие антенные системы СВЧ, пер. с англ., т. 1–3, М., 1966–71.
  М. Б. Заксон.


B1B4 входы ФАР; ДС — диаграммообразующая схема; ОИ — основные излучатели; ВИ — вспомогательные излучатели; СИ — совмещенные излучатели; О — облучатель; От — отражатель; j — фазовращатель; пунктиром изображена электромагнитная волна с плоским фазовым фронтом, излучаемая ФАР, штрих-пунктиром — со сферическим фазовым фронтом, излучаемая облучателем." href="/a_pictures/18/10/243771575.jpg">Рис. 3. Типовые схемы возбуждения фазированных антенных решёток (ФАР) с последовательных возбуждением (а), параллельным возбуждением (б), многолучевой ФАР (в), квазиоптических ФАР — проходного (г) и отражательного (д) типов: В — возбуждающий фидер; И — излучатели; ПН — поглощающая нагрузка; Л — диаграмма направленности (луч); <a href=B1B4 входы ФАР; ДС — диаграммообразующая схема; ОИ — основные излучатели; ВИ — вспомогательные излучатели; СИ — совмещенные излучатели; О — облучатель; От — отражатель; j — фазовращатель; пунктиром изображена электромагнитная волна с плоским фазовым фронтом, излучаемая ФАР, штрих-пунктиром — со сферическим фазовым фронтом, излучаемая облучателем."http://boron.atomistry.com/">B1B4 входы ФАР; ДС — диаграммообразующая схема; ОИ — основные излучатели; ВИ — вспомогательные излучатели; СИ — совмещенные излучатели; О — облучатель; От — отражатель; j — фазовращатель; пунктиром изображена электромагнитная волна с плоским фазовым фронтом, излучаемая ФАР, штрих-пунктиром — со сферическим фазовым фронтом, излучаемая облучателем." src="a_pictures/18/10/th_243771575.jpg">
Рис. 3. Типовые схемы возбуждения фазированных антенных решёток (ФАР) с последовательных возбуждением (а), параллельным возбуждением (б), многолучевой ФАР (в), квазиоптических ФАР — проходного (г) и отражательного (д) типов: В — возбуждающий фидер; И — излучатели; ПН — поглощающая нагрузка; Л — диаграмма направленности (луч); B1B4 входы ФАР; ДС — диаграммообразующая схема; ОИ — основные излучатели; ВИ — вспомогательные излучатели; СИ — совмещенные излучатели; О — облучатель; От — отражатель; j — фазовращатель; пунктиром изображена электромагнитная волна с плоским фазовым фронтом, излучаемая ФАР, штрих-пунктиром — со сферическим фазовым фронтом, излучаемая облучателем.




"БСЭ" >> "Ф" >> "ФА" >> "ФАЗ"

Статья про "Фазированная антенная решётка" в Большой Советской Энциклопедии была прочитана 726 раз
Бургер двойного помола
Бургер двойного помола

TOP 20