График, геометрическое изображение функциональной зависимости при помощи линии на плоскости. Например, на рис. 1 изображен График изменения атмосферного давления со временем. График применяют как для наглядного изображения функциональных зависимостей и придания наглядности их исследованию, так и для быстрого фактического нахождения значений функций по значениям аргументов. Виды График очень разнообразны и зависят от того, какая система координат на плоскости положена в их основу. Если система координат выбрана, то График функции f(x) есть не что иное, как множество (или, как иначе говорят, «геометрическое место») тех точек плоскости, координаты которых удовлетворяют уравнению y = f(x). В большинстве случаев График строят в декартовых прямоугольных координатах. На рис. 2 изображен График функции у = х2 — парабола, а на рис. 3 — График функции представляющий полуокружность, начинающуюся в точке с координатами (—1, 0) и кончающуюся в точке с координатами (+1, 0).
В прямоугольной системе координат масштабы по осям одинаковы; на практике от этого неудобного ограничения отказываются, выбирая разные масштабы по осям координат так, чтобы наилучшим образом использовать площадь листа бумаги, отводимую для График Употребляются также График, основанные на других системах координат, например полярной; последняя особенно удобна для изображения функций углового аргумента (на рис. 4 даны построенные в полярной системе координат График распределения силы света, испускаемого по различным направлениям тремя типами дуговых фонарей). Иногда для упрощения вида График целесообразно принимать за координаты точки те или иные функции от переменных х и у. (О возникающем отсюда особом способе графического изображения функций см. ст. Номография.) Например, если значениям аргумента и функции — значениям (х, у) — ставить в соответствие точку с декартовыми координатами (lgx,lgy), то График функции у = хn при любом показателе n оказываются прямолинейными (рис. 5). Для быстрого вычерчивания подобных График служит полулогарифмическая и логарифмическая бумага.
Если График является прямой линией или дугой окружности, то его можно строить с помощью линейки или циркуля по двум, соответственно трём точкам. В остальных случаях для вычерчивания График приходится наносить на бумагу достаточно большое число принадлежащих ему точек, а затем проводить через эти точки линию График «на глаз». Эта операция, всегда несколько произвольная, во всяком случае имеет смысл лишь в предположении непрерывности функции. Если функция не только непрерывная, но и достаточно «гладкая» (т. е. её производные первых двух-трёх порядков меняются с изменением аргумента не слишком быстро), то при некотором навыке проведение График по точкам делается очень точно. Нанеся на один чертёж График функций y = j1(x) и y = j2(x), по точкам их пересечения можно определить корни уравнения j1(x) = j2(x) (см. рис. 3 в ст.Графические вычисления).
Существует большое число самопишущих приборов, автоматически наносящих на бумагу График наблюдаемой функциональной зависимости, минуя её аналитическое выражение (например, барограф, строящий График давления атмосферы в функции времени). Часто для графического изображения зависимости между величинами пользуются диаграммами. В экономике и организации производства распространение получили контрольные и плановые График (см. Графические методы в управлении производством) и организационные График, изображающие организационные связи и зависимости (например, схема управления предприятием). Во многих вопросах целесообразно одновременно рассматривать График нескольких различных функций, изображая их на одном и том же чертеже. Типичным примером таких График являются графики движения на транспорте.