Конические сечения

Определение "Конические сечения" в Большой Советской Энциклопедии

Конические сечения. Рис.
Конические сечения, линии, которые получаются сечением прямого кругового конуса плоскостями, не проходящими через его вершину. Конические сечения могут быть трёх типов:



1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения есть замкнутая овальная кривая - эллипс; окружность как частный случай эллипса получается, когда секущая плоскость перпендикулярна оси конуса.


2) Секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая - парабола, целиком лежащая на одной полости.


3) Секущая плоскость пересекает обе полости конуса; линия пересечения - гипербола - состоит из двух одинаковых незамкнутых, простирающихся в бесконечность частей (ветвей гиперболы), лежащих на обеих полостях конуса.
С точки зрения аналитической геометрии Конические сечения- действительные нераспадающиеся линии второго порядка.


В тех случаях, когда Конические сечения имеет центр симметрии (центр), т. е. является эллипсом или гиперболой, его уравнение может быть приведено (путём перенесения начала координат в центр) к виду:
a11x2+2a12xy + a22y2 = a33.
Дальнейшие исследования таких (называемых центральными) Конические сечения показывают, что их уравнения могут быть приведены к ещё более простому виду:
Ах2 + Ву2= С,              (1)


если за направления осей координат выбрать т. н. главные направления - направления главных осей (осей симметрии) Конические сечения Если А и В имеют одинаковые знаки (совпадающие со знаком С), то уравнение (1) определяет эллипс; если А и В разного знака, то - гиперболу.



Уравнение параболы привести к виду (1) нельзя. При надлежащем выборе осей координат (одна ось координат - единственная ось симметрии параболы, другая - перпендикулярная к ней прямая, проходящая через вершину параболы) её уравнение можно привести к виду:
y2 = 2рх.


Конические сечения были известны уже математикам Древней Греции (например, Менехму, 4в. до н. э.); с помощью этих кривых решались некоторые задачи на построение (удвоение куба и др.), оказавшиеся недоступными при использовании простейших чертёжных инструментов - циркуля и линейки. В первых дошедших до нас исследованиях греческие геометры получали Конические сечения, проводя секущую плоскость перпендикулярно к одной из образующих, при этом, в зависимости от угла раствора при вершине конуса (т. е. наибольшего угла между образующими одной полости), линия пересечения оказывалась эллипсом, если этот угол -острый, параболой, если - прямой, и гиперболой, если - тупой. Наиболее полным сочинением, посвященным этим кривым, были «Конические сечения» Аполлония Пергского (около 200 до н. э.). Дальнейшие успехи теории Конические сечения связаны с созданием в 17 в. новых геометрических методов: проективного (французские математики Ж. Дезарг, Б. Паскаль) и в особенности координатного (французские математики Р. Декарт, П. Ферма).
При надлежащем выборе системы координат уравнение Конические сечения может быть приведено к виду:
y2 = 2px + lx2 (р и l постоянные).


Если р ¹ 0, то оно определяет параболу при l = 0, эллипс при l < 0, гиперболу при l > 0. Геометрическое свойство Конические сечения, содержащееся в последнем уравнении, было известно уже древнегреческим геометрам и послужило для Аполлония Пергского поводом присвоить отдельным типам Конические сечения названия, сохранившиеся до сих пор: слово «парабола» (греческого parabole) означает приложение (т. к. в греческой геометрии превращение прямоугольника данной площади y2 в равновеликий ему прямоугольник с данным основанием 2p называлось приложением данного прямоугольника к этому основанию); слово «эллипс» (греческий élleipsis) - недостаток (приложение с недостатком), слово «гипербола» (греческий hyperbole) - избыток (приложение с избытком).


С переходом к современным методам исследования стереометрическое определение Конические сечения было заменено планиметрическими определениями этих кривых как геометрических мест на плоскости. Так, например, эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух данных точек (фокусов) имеет данное значение.


Можно дать другое планиметрическое определение Конические сечения, охватывающее все три типа этих кривых: Конические сечения- геометрическое место точек, для каждой из которых отношение её расстояний до данной точки («фокуса») к расстоянию до данной прямой («директрисы») равно данному положительному числу («эксцентриситету») е. Если при этом е < 1, то Конические сечения- эллипс; если е > 1, то - гипербола; если е = 1, то - парабола.


Интерес к Конические сечения всегда поддерживался тем, что эти кривые часто встречаются в различных явлениях природы и в человеческой деятельности. В науке Конические сечения приобрели особенное значение после того, как немецкий астроном И. Кеплер открыл из наблюдений, а английский учёный И. Ньютон теоретически обосновал законы движения планет, один из которых утверждает, что планеты и кометы Солнечной системы движутся по Конические сечения, в одном из фокусов которого находится Солнце. Следующие примеры относятся к отдельным типам Конические сечения: параболу описывает снаряд или камень, орошенный наклонно к горизонту (правильная форма кривой несколько искажается сопротивлением воздуха); в некоторых механизмах пользуются зубчатыми колёсами эллиптической формы («эллиптическая зубчатка»); гипербола служит графиком обратной пропорциональности, часто наблюдающейся в природе (например, закон Бойля - Мариотта).
Лит.: Александров П. С., Лекции по аналитической геометрии, М., 1968; Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959.
В. И. Битюцков.




"БСЭ" >> "К" >> "КО" >> "КОН" >> "КОНИ"

Статья про "Конические сечения" в Большой Советской Энциклопедии была прочитана 584 раз
Пицца в сковороде
Пицца в чугунной сковородке

TOP 20