Пинч-эффект

Определение "Пинч-эффект" в Большой Советской Энциклопедии


Пинч-эффект (от англ. pinch — сужение, сжатие), эффект самостягивания разряда, свойство электрического токового канала в сжимаемой проводящей среде уменьшать своё сечение под действием собственного, порождаемого самим током, магнитного поля. Впервые это явление описано в 1934 американским учёным У. Беннетом применительно к потокам быстрых заряженных частиц в газоразрядной плазме. Термин «Пинч-эффект-э.» введён в 1937 английским физиком Л. Тонксом при исследовании дугового разряда.


  Механизм Пинч-эффект-э. проще всего понять на примере тока I, текущего вдоль оси цилиндра, заполненного проводящей средой. Силовые линии магнитного поля, создаваемого I, имеют вид концентрических окружностей, плоскости которых перпендикулярны оси цилиндра. Электродинамическая сила, действующая на единицу объёма проводящей среды с плотностью тока j, в СГС системе единиц равна 1/c × [jb] и направлена к оси цилиндра, стремясь сжать среду. Возникающее состояние и есть Пинч-эффект-э. (Здесь квадратные скобки обозначают векторное произведение; с — скорость света в вакууме; В — магнитная индукция в рассматриваемом единичном объёме.) Пинч-эффект-э. можно считать также простым следствием Ампера закона о магнитном притяжении отдельных параллельных токовых нитей (элементарных токовых трубок), совокупностью которых является токовый цилиндр. Магнитному сжатию препятствует газокинетическое давление проводящей среды, обусловленное тепловым движением её частиц; силы этого давления направлены от оси токового канала. Однако при достаточно большом токе перепад магнитного давления становится больше газокинетического и токовый канал сжимается — возникает Пинч-эффект-э.



Для Пинч-эффект-э. необходимо примерное равенство концентраций носителей зарядов противоположного знака в среде. В потоках же носителей зарядов одного знака электрическое поле пространственного заряда эффективно препятствует сжатию тока. Прохождение достаточно больших токов через газ сопровождается его переходом в состояние полностью ионизованной плазмы, состоящей из заряженных частиц обоих знаков. Пинч-эффект-э. в этом случае отжимает плазменный шнур (токовый канал) от стенок камеры, в которой происходит разряд. Т. о. создаются условия для магнитной термоизоляции плазмы. Этим свойством мощных самосжимающихся разрядов (их называют пинчами) объясняется возникший в связи с проблемой управляемого термоядерного синтеза (УТС) интерес к Пинч-эффект-э., как к наиболее простому и обнадёживающему механизму удержания высокотемпературной плазмы.


Условия, при которых газокинетическое давление плазмы nk (Te + Ti) становится равным магнитному давлению поля тока I, описываются соотношением Беннета: (2I/cr)2/8p = nk (Te + Ti). Здесь n — число частиц в единице объёма, r — радиус пинча; Te и Ti электронная и ионная температуры, соответственно; n — число электронов в единице объёма (равное из условия квазинейтральности плазмы числу ионов); kБольцмана постоянная. Из формулы Беннета следует, что для достижения минимальной температуры (Т~108К), при которой термоядерный синтез может представлять интерес как источник энергии, требуется хотя и большой, но вполне осуществимый ток ~ 106 а. Исследование пинчей в дейтерии началось в 1950—51 одновременно в СССР, США и Великобритании в рамках национальных программ по УТС. При этом основное внимание уделялось двум типам пинчей — линейному и тороидальному. Предполагалось, что плазма в них при протекании тока будет нагреваться не только за счёт её собственного электрического сопротивления (джоулев нагрев), но и при так называемом адиабатическом (т. е. происходящем без обмена энергией с окружающей средой) сжатии пинча. Однако в первых же экспериментах выяснилось, что Пинч-эффект-э. сопровождается развитием различных плазменных неустойчивостей (см. Магнитные ловушки). Образовывались местные пережатия («шейки») пинча, его изгибы и винтовые возмущения («змейки»). Нарастание этих возмущений происходит чрезвычайно быстро и ведёт к разрушению пинча (его разрыву или выбрасыванию плазмы на стенки камеры). Оказалось, что простейшие пинчи подвержены практически всем видам неустойчивостей высокотемпературной плазмы и могут служить как для их изучения, так и для испытания разных способов стабилизации плазменного шнура. Ток ~ 106 а в установках с линейным пинчём получают при разряде на газовый промежуток мощных конденсаторных батарей. Скорости нарастания тока в отдельных случаях ~1012 а/сек. При этом наиболее существенным оказывается не джоулев нагрев, а электродинамическое ускорение к оси токового шнура его тонкой наружной оболочки (скин-слоя; см. Скин-эффект), сопровождающееся образованием мощной сходящейся к оси ударной волны. Превращение накопленной такой волной энергии в тепловую создаёт плазму с температурой, намного более высокой, чем мог бы дать джоулев нагрев. С др. стороны, преобразование в пинче энергии электрического тока в тепловую становится значительно эффективнее, когда определяющий вклад в электрическое сопротивление плазмы начинает давать её турбулентность, возникающая при развитии так называемых микронеустойчивостей (см. Плазма).


  Для мощных импульсных пинчей в разрежённом дейтерии характерно, что при некоторых условиях они становятся источниками жёстких излучений (нейтронного и рентгеновского). Это явление впервые было обнаружено в СССР в 1952.


Хотя в простейших вариантах пинчей и не удалось решить задачу УТС, самосжимающиеся разряды явились своеобразной школой плазменных исследований, позволив получать плотную плазму со временем жизни хотя и малым, но достаточным для изучения физики Пинч-эффект-э., создать разнообразные методы диагностики плазмы, развить современную теорию процессов в ней. Эволюция установок, использующих Пинч-эффект-э., привела к созданию многих типов плазменных устройств, в которых неустойчивости Пинч-эффект-э. либо стабилизируются с помощью внешних магнитных полей («Токамаки», Q-пинчи и т.д.), либо сами эти неустойчивости используются для получения короткоживущей сверхплотной плазмы в так называемых «быстрых» процессах («плазменный фокус», «микро-пинчи»). Поэтому в настоящее время (1975) существенное место в национальной и межнациональной программах решения проблемы УТС (СССР, США, Европейское сообщество по атомной энергии) отводится системам, в основе которых лежит Пинч-эффект-э.


Пинч-эффект-э. имеет место не только в газовом разряде, но и в плазме твёрдых тел, особенно в так называемой сильно вырожденной электронно-дырочной плазме полупроводников.
 


  Лит.: Арцимович Л. А., Элементарная физика плазмы, 3 изд., М., 1969, Пост Р., Высокотемпературная плазма и управляемые термоядерные реакции, пер. с англ., М., 1961; Стил М., Вюраль Б., Взаимодействие волн в плазме твёрдого тела, пер. с англ., М., 1973.
Т. И. Филиппова, Н. В. Филиппов.



"БСЭ" >> "П" >> "ПИ" >> "ПИН"

Статья про "Пинч-эффект" в Большой Советской Энциклопедии была прочитана 729 раз
Коптим скумбрию в коробке
Чистим кильку легко и просто

TOP 20