БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ
Навигация:

Библиотека DJVU
Photogallery

БСЭ

Статистика:


Полупроводники

Значение слова "Полупроводники" в Большой Советской Энциклопедии


Полупроводники, широкий класс веществ, характеризующихся значениями электропроводности s, промежуточными между электропроводностью металлов
(s ~ 106-104 ом-1 см-1) и хороших диэлектриков (s £ 10-10-10-12 ом-1см-1, электропроводность указана при комнатной температуре). Характерной особенностью Полупроводники, отличающей их от металлов, является возрастание электропроводности s с ростом температуры, причём, как правило, в достаточно широком интервале температур возрастание происходит экспоненциально:

s = s0ехр (-EA/кТ).     (1)

  Здесь k - Больцмана постоянная, EA - энергия активации электронов в Полупроводники, (s0 - коэффициент пропорциональности (в действительности зависит от температуры, но медленнее, чем экспоненциальный множитель). С повышением температуры тепловое движение разрывает связи электронов, и часть их, пропорциональная exp (-EA/kT), становится свободными носителями тока.

  Связь электронов может быть разорвана не только тепловым движением, но и различными внешними воздействиями: светом, потоком быстрых частиц, сильным электрическим полем и т.д. Поэтому для Полупроводники характерна высокая чувствительность электропроводности к внешним воздействиям, а также к содержанию примесей и дефектов в кристаллах, поскольку во многих случаях энергия EA для электронов, локализованных вблизи примесей или дефектов, существенно меньше, чем в идеальном кристалле данного Полупроводники Возможность в широких пределах управлять электропроводностью Полупроводники изменением температуры, введением примесей и т.д. является основой их многочисленных и разнообразных применений.

  Полупроводники и диэлектрики. Классификация полупроводников. Различие между Полупроводники и диэлектриками является скорее количественным, чем качественным. Формула (1) относится в равной мере и к диэлектрикам, электропроводность которых может стать заметной при высокой температуре. Точнее было бы говорить о полупроводниковом состоянии неметаллических веществ, не выделяя Полупроводники в особый класс, а к истинным диэлектрикам относить лишь такие, у которых в силу больших значений EA и малых s0 электропроводность могла бы достигнуть заметных значений только при температурах, при которых они полностью испаряются.

  Однако термин «Полупроводники» часто понимают в более узком смысле, как совокупность нескольких наиболее типичных групп веществ, полупроводниковые свойства которых четко выражены уже при комнатной температуре (300 К). Примеры таких групп:

  1) Элементы IV группы периодической системы элементов Менделеева германий и кремний, которые как Полупроводники пока наиболее полно изучены и широко применяются в полупроводниковой электронике. Атомы этих элементов, обладая 4 валентными электронами, образуют кристаллические решётки типа алмаза с ковалентной связью атомов, Сам алмаз также обладает свойствами Полупроводники, однако величина EA для него значительно больше, чем у Ge и Si, и поэтому при Т =  300 К его собственная (не связанная с примесями или внешними воздействиями) электропроводность весьма мала.

  2) Алмазоподобные Полупроводники К ним относятся соединения элементов III группы периодической системы (Al, Ga, In) с элементами V группы (Р, As, Sb), называются Полупроводники типа AIII BV (GaAs, InSb, GaP, InP и т.п.). Атомы III группы имеют 3 валентных электрона, а V группы - 5, так что среднее число валентных электронов, приходящееся на 1 атом, в этих соединениях равно 4 (как и у Ge и Si). Каждый атом образует 4 валентные связи с ближайшими соседями, в результате чего получается кристаллическая решётка, подобная решётке алмаза с той лишь разницей, что ближайшие соседи атома AIII - атомы BV а соседи атома BV - атомы AIII. За счёт частичного перераспределения электронов атомы AIII и BV в такой структуре оказываются разноимённо заряженными. Поэтому связи в кристаллах AIII BV не полностью ковалентные, а частично ионные (см. Ионная связь). Однако ковалентная связь в них преобладает и определяет структуру, в результате чего эти кристаллы по многим свойствам являются ближайшими аналогами Ge и Si.

  Соединения элементов II и VI групп периодической системы - AIIBVI (ZnTe, ZnSe, CdTe, CdS и т.п.) также имеют в среднем 4 валентных электрона на 1 атом, но ионная связь у них более сильно выражена. У некоторых из них ковалентная связь преобладает над ионной, у других она слабее, но и те и другие обладают свойствами Полупроводники, хотя и не столь ярко выраженными, как в предыдущих группах.

  Представление о «средней четырёхвалентности» и «алмазоподобных» Полупроводники оказалось плодотворным для поиска новых Полупроводники, например типа AIIBIVC2V (ZnSnP2, CdGeAs2 и т.п.). Многие из алмазоподобных Полупроводники образуют сплавы, которые также являются Полупроводники, например Ge - Si, GaAs - GaP и др.

  3) Элементы VI и V групп и их аналоги. Элементы VI группы Te и Se как Полупроводники были известны раньше, чем Ge и Si, причём Se широко использовался в выпрямителях электрического тока и фотоэлементах. Элементы V группы As, Sb и Bi - полуметаллы, по свойствам близкие к Полупроводники, а их ближайшие аналоги - соединения типа AIV и BVI (PbS, PbTe, SnTe, GeTe и т.п.), имеющие в среднем по 5 валентных электронов на атом, образуют одну из наиболее важных групп Полупроводники, известную в первую очередь применением PbS, PbSe и PbTe в качестве приёмников инфракрасного излучения. Вообще среди соединений элементов VI группы (О, S, Se, Te) с элементами I-V групп очень много Полупроводники Большинство из них мало изучены. Примером более изученных и практически используемых могут служить Cu2O (купроксные выпрямители) и Bi2Te3 (термоэлементы).

  4) Соединения элементов VI группы с переходными или редкоземельными металлами (Ti, V, Mn, Fe, Ni, Sm, Eu и т.п.). В этих Полупроводники преобладает ионная связь. Большинство из них обладает той или иной формой магнитного упорядочения (ферромагнетики или антиферромагнетики). Сочетание полупроводниковых и магнитных свойств и их взаимное влияние интересно как с теоретической точки зрения, так и для многих практических применений. Некоторые из них (V2O3, Fe3O4, NiS, EuO и др.) могут переходить из полупроводникового состояния в металлическое, причём превращение это происходит очень резко при изменении температуры.

  Органические Полупроводники Многие органические соединения также обладают свойствами Полупроводники Их электропроводность, как правило, мала (s ~ 10-10 ом-1см-1) и сильно возрастает под действием света. Однако некоторые органические Полупроводники (кристаллы и полимеры на основе соединений тетрацианхинодиметана TCNQ, комплексы на основе фталоцианина, перилена, виолантрена и др.) имеют при комнатной температуре s, сравнимую с проводимостью хороших неорганических Полупроводники

  Электроны и дырки в полупроводниках. Т. к. в твёрдом теле атомы или ионы сближены на расстояние ~ атомного радиуса, то в нём происходят переходы валентных электронов от одного атома к другому. Такой электронный обмен может привести к образованию ковалентной связи. Это происходит в случае, когда электронные оболочки соседних атомов сильно перекрываются и переходы электронов между атомами происходят достаточно часто. Эта картина полностью применима к такому типичному Полупроводники, как Ge. Все атомы Ge нейтральны и связаны друг с другом ковалентной связью. Однако электронный обмен между атомами не приводит непосредственно к электропроводности, т.к. в целом распределение электронной плотности жестко фиксировано: по 2 электрона на связь между каждой парой атомов - ближайших соседей. Чтобы создать проводимость в таком кристалле, необходимо разорвать хотя бы одну из связей (нагрев, поглощение фотона и т.д.), т. е., удалив с неё электрон, перенести его в какую-либо др. ячейку кристалла, где все связи заполнены и этот электрон будет лишним. Такой электрон в дальнейшем свободно может переходить из ячейки в ячейку, т.к. все они для него эквивалентны, и, являясь всюду лишним, он переносит с собой избыточный отрицательный заряд, т. е. становится электроном проводимости. Разорванная же связь становится блуждающей по кристаллу дыркой, поскольку в условиях сильного обмена электрон одной из соседних связей быстро занимает место ушедшего, оставляя разорванной ту связь, откуда он ушёл. Недостаток электрона на одной из связей означает наличие у атома (или пары атомов) единичного положительного заряда, который, таким образом, переносится вместе с дыркой.

  В случае ионной связи перекрытие электронных оболочек меньше, электронные переходы менее часты. При разрыве связи также образуются электрон проводимости и дырка - лишний электрон в одной из ячеек кристалла и некомпенсированный положительный заряд в др. ячейке. Оба они могут перемещаться по кристаллу, переходя из одной ячейки в другую.

  Наличие двух разноимённо заряженных типов носителей тока - электронов и дырок является общим свойством Полупроводники и диэлектриков. В идеальных кристаллах эти носители появляются всегда парами - возбуждение одного из связанных электронов и превращение его в электрон проводимости неизбежно вызывает появление дырки, так что концентрации обоих типов носителей равны. Это не означает, что вклад их в электропроводность одинаков, т.к. скорость перехода из ячейки в ячейку (подвижность) у электронов и дырок может быть различной (см. ниже). В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться, так что электропроводность осуществляется практически только одним типом носителей (см. ниже).

  Зонная структура полупроводников. Полное и строгое описание природы носителей тока в Полупроводники и законов их движения даётся в рамках квантовой теории твёрдого тела, основные результаты которой могут быть сформулированы следующим образом:

  а) В кристаллах энергетический спектр электронов состоит из интервалов энергий, сплошь заполненных уровнями энергии (разрешенные зоны) и разделённых друг от друга интервалами, в которых электронных уровней нет (запрещённые зоны) (рис. 1).

  б) Различные состояния электрона в пределах каждой зоны характеризуются, помимо энергии, квазиимпульсом р, принимающим любые значения в пределах некоторых ограниченных областей в импульсном пространстве (р-пространстве), называются зонами Бриллюэна. Форма и размеры зоны Бриллюэна определяются симметрией кристалла и его межатомными расстояниями d. Величина рмакс £ h/d, где h - Планка постоянная. Уравнение движения электрона проводимости в кристалле похоже на уравнение движения электрона в вакууме с той, однако, существенной разницей, что соотношения E = р2/m0 и up = p/m0 (m0 - масса свободного электрона, E - его энергия, р - импульс, u - скорость) заменяются более сложной и индивидуальной для каждого кристалла и каждой его энергетической зоны зависимостью E (p): up = .

  в) При абсолютном нуле температуры электроны заполняют наинизшие уровни энергии. В силу Паули принципа в каждом состоянии, характеризующемся определённой энергией, квазиимпульсом и одной из двух возможных ориентаций спина, может находиться только один электрон. Поэтому в зависимости от концентрации электронов в кристалле они заполняют несколько наинизших разрешенных зон, оставляя более высоко лежащие зоны пустыми. Кристалл, у которого при Т = 0 К часть нижних зон целиком заполнена, а более высокие зоны пусты, является диэлектриком или Полупроводники (рис. 1, а), металл возникает лишь в том случае, если хотя бы одна из разрешенных зон уже при Т = 0 К заполнена частично (рис. 1, б).

  В Полупроводники и диэлектриках верхние из заполненных разрешенных зон называются валентными, а наиболее низкие из незаполненных - зонами проводимости. При Т > 0 К тепловое движение «выбрасывает» часть электронов из валентной зоны в зону проводимости (т. е. разрушает часть химических связей; см. выше). В валентной зоне при этом появляются дырки (рис. 2).

  Носители тока в Полупроводники сосредоточены, как правило, в довольно узких областях энергий: электроны - вблизи нижнего края (дна) зоны проводимости Ec, на энергетических расстояниях ~kT от неё (kT - энергия теплового движения); дырки - в области такой же ширины вблизи верхнего края (потолка) валентной зоны Eu. Даже при самых высоких температурах (~ 1000°) kT ~ 0,1 эв, а ширина разрешенных зон обычно порядка 1-10 эв. В этих узких областях ~kT сложные зависимости E (p), как правило, принимают более простой вид. Например, для электронов вблизи дна зоны проводимости:



  Здесь индекс i нумерует оси координат, p0i - квазиимпульсы, соответствующие Ec в зоне проводимости или Eu в валентной зоне. Коэффициенты mэi называются эффективными массами электронов проводимости. Они входят в уравнение движения электрона проводимости подобно m0 в уравнении движения свободного электрона. Всё сказанное справедливо для дырок валентной зоны, где

.

  Эффективные массы электронов mэ и дырок mд не совпадают с m0 и, как правило, анизотропны. Поэтому в разных условиях один и тот же носитель ведёт себя как частица с разными эффективными массами. Например, в электрическом поле Е, направленном вдоль оси oz, он ускоряется, как частица с зарядом е и массой mэz, а в магнитном поле H, направленном вдоль oz, движется по эллипсу в плоскости ^Н с циклотронной частотой:



  С квантовой точки зрения такое циклическое движение электронов и дырок в кристалле с частотой wс означает наличие уровней энергии (так называемых уровней Ландау), отстоящих друг от друга на wс. Значения эффективных масс электронов и дырок в разных Полупроводники варьируются от сотых долей m0 до сотен m0.

  Ширина запрещенной зоны DE (минимальная энергия, отделяющая заполненную зону от пустой) также колеблется в широких пределах. Так, при Т ® 0 К DE = 0,165 эв в PbSe, 0,22 эв в InSb, 0,33 эв в Te, 0,745 эв в Ge, 1,17 эв в Si, 1,51 эв в GaAs, 2,32 эв в GaP, 2,58 эв в CdS, 5,6 эв в алмазе, а серое олово является примером Полупроводники, у которого DE = 0, т. е. верхний край валентной зоны точно совпадает с нижним краем зоны проводимости (полуметалл). Более сложные соединения и сплавы Полупроводники, близких по структуре, позволяют найти Полупроводники с любым DE от 0 до 2-3 эв.

  Зонная структура наиболее полно изучена для алмазоподобных Полупроводники, в первую очередь Ge, Si и соединений AIIIBV; многое известно для Te, соединений AIVBVI и др. Весьма типичной является зонная структура Ge (рис. 3), у которого вблизи своего верхнего края соприкасаются две валентные зоны. Это означает существование двух типов дырок - тяжёлых и легких с эффективными массами 0,3 m0 и 0,04 m0. На 0,3 эв ниже расположена ещё одна валентная зона, в которую, однако, как правило, дырки уже не попадают. Для зоны проводимости Ge характерно наличие трёх типов минимумов функции E (р): L, Г и D. Наинизший из них - L-минимум, расположенный на границе зоны Бриллюэна в направлении кристаллографической оси [111]. Расстояние его от верхнего края валентной зоны и есть ширина запрещенной зоны DE = 0,74 эв (при температурах, близких к абсолютному нулю; с ростом температуры DE несколько уменьшается). Эффективные массы вблизи L-минимума сильно анизотропны: 1,6m0 для движения вдоль направления [111] и 0,08m0 для перпендикулярных направлений. Четырём эквивалентным направлениям [111] (диагонали куба) в кристалле Ge соответствуют 4 эквивалентных L-минимума. Минимумы Г и Д расположены соответственно при р = 0 и в направлении оси [100], по энергии выше L-минимума на 0,15 эв и 0,2 эв. Поэтому количество электронов проводимости в них, как правило, гораздо меньше, чем в L-минимуме.

  Зонные структуры др. алмазоподобных Полупроводники подобны структуре Ge с некоторыми отличиями. Так, в Si, GaP и алмазе наинизшим является D-минимум, а в InSb, InAs, GaAs - Г-минимум, причём для последнего характерны изотропные и весьма малые эффективные массы (0,013 то в InSb и 0,07 то в GaAs). Структуры валентных зон у многих алмазоподобных Полупроводники подобны, но могут существенно отличаться от Полупроводники др. групп.

  Некристаллические полупроводники. В жидких, аморфных и стеклообразных Полупроводники отсутствует идеальная кристаллическая упорядоченность атомов, но ближайшее окружение каждого атома приблизительно сохраняется (см. Дальний порядок и ближний порядок). Однако ближний порядок не всегда бывает таким же, как и в кристаллической фазе того же вещества. Так, в ковалентных Полупроводники (Ge, Si, AIIIBV) после плавления у каждого атома становится не по 4 ближайших соседа, а по 8, по той причине, что ковалентные связи, весьма чувствительные как к расстоянию между атомами, так и к взаимной ориентации связей, разрушаются интенсивным тепловым движением атомов в жидкости. В результате такой перестройки ближнего порядка все эти вещества в расплавах становятся металлами (см. Жидкие металлы).

  Однако в др. Полупроводники (Те, Se, AIVBVI и др.) ближний порядок при плавлении, по-видимому, не изменяется и они остаются Полупроводники в расплавах (см. Жидкие полупроводники). В применении к ним, а также к аморфным Полупроводники представления зонной теории требуют существенных изменений и дополнений. Отсутствие строгой упорядоченности в расположении атомов создаёт локальные флуктуации плотности и межатомных расстояний, которые делают не вполне одинаковыми энергии электрона вблизи разных атомов одного и того же сорта. Это затрудняет переход электрона от атома к атому, т.к. такие переходы связаны теперь с изменением энергии. Это обстоятельство не приводит к каким-либо качественным изменениям для носителей, энергии которых лежат в разрешенных зонах довольно далеко от их краев, поскольку они имеют достаточно большие энергии для того, чтобы сравнительно легко преодолевать энергетические барьеры между разными атомами одного сорта. Однако картина качественно изменяется для носителей с энергиями вблизи краев зон. У них уже не хватает энергии для преодоления разностей энергии между соседними атомами и поэтому они могут стать локализованными, т. е. потерять способность перемещаться. В результате возникают электронные уровни в диапазоне энергий, который в кристалле соответствовал бы запрещенной зоне. Находящиеся на этих уровнях электроны локализованы вблизи соответствующих флуктуаций, и к ним уже неприменимы такие понятия зонной теории, как квазиимпульс и др. Меняется и само понятие запрещенной зоны: теперь уже эта область энергий также заполнена электронными состояниями, однако природа этих состояний иная, чем в разрешенных зонах, - они локализованы (псевдозапрещённая зона).

  Оптические свойства полупроводников. Со структурой энергетических зон Полупроводники связан механизм поглощения ими света. Самым характерным для Полупроводники процессом поглощения является собственное поглощение, когда один из электронов валентной зоны с квазиимпульсом р, поглощая квант света, переходит в незаполненное состояние какой-либо из зон проводимости с квазиимпульсом р". При этом энергия фотона w (w = 2pс/l) (w - частота света, l - его длина волны) связана с энергиями электрона в начальном Ен и конечном Ек состояниях соотношением:

w = Ек (p’) - Ен (p),     (5)

а для квазиимпульсов имеет место закон сохранения, аналогичный закону сохранения импульса:

р" = р + q » р,     (6)

где q - волновой вектор фотона. Импульс фотона q практически пренебрежимо мал по сравнению с квазиимпульсами электронов. Поэтому справедливо приближённое равенство ~p" » p.

  Собственное поглощение света невозможно при энергии фотона w, меньшей ширины запрещенной зоны DE (минимальная энергия поглощаемых квантов w = DE называется порогом или краем поглощения). Это означает, что для длин волн

l > lмакс = 2p c/DE     (7)

чистый Полупроводники прозрачен. Строго говоря, минимальная энергия квантов, поглощаемых данным Полупроводники, может быть >DE, если края зоны проводимости Ec и валентной зоны Eu соответствуют различным р. Переход между ними не удовлетворяет требованию р = р’, в результате чего поглощение начинается с больших w, т. е. с более коротких длин волн (для Ge переходы в Г-минимум зоны проводимости, см. рис. 3).

  Однако переходы, для которых р ¹ р’, всё же возможны, если электрон, поглощая квант света, одновременно поглощает или испускает фонон. Если частота фонона wк, а импульс равен р - р’, то закон сохранения энергии имеет вид:

w = Ек (р") - Ен (р) ± wк     (8)

  Т. к. энергии фононов малы (wк~ 10-2 эв) по сравнению с DE, то их вклад в (8) мал. Оптические переходы, в которых электрон существенно изменяет свой квазиимпульс, называются непрямыми, в отличие от прямых, удовлетворяющих условию р = р". Необходимость испускания или поглощения фонона делает непрямые переходы значительно менее вероятными, чем прямые. Поэтому. показатель поглощения света К, обусловленный непрямыми переходами, порядка 103 см-1, в то время как в области прямых переходов показатель поглощения достигает 105 см-1. Тем не менее у всех Полупроводники, где края зоны проводимости и валентной зоны соответствуют разным р, есть область l вблизи lмакс, где наблюдаются только непрямые переходы.

  Показатель поглощения света в Полупроводники определяется произведением вероятности поглощения фотона каждым электроном на число электронов, способных поглощать кванты данной энергии. Поэтому изучение частотной зависимости показателя поглощения даёт сведения о распределении плотности электронных состояний в зонах. Так, вблизи края поглощения в случае прямых переходов показатель поглощения пропорционален плотности состояний

.

  Наличие в спектре поглощения Полупроводники широких и интенсивных полос в области, w порядка DE показывает, что большое число валентных электронов слабо связано. Т. к. слабая связь легко деформируется внешним электрическим полем, то это обусловливает высокую поляризуемость кристалла. И действительно, для многих Полупроводники (алмазоподобные, AIVBVI и др.) характерны большие значения диэлектрической проницаемости e. Так, в Ge e = 16, в GaAs e =11, в PbTe e = 30. Благодаря большим значениям e кулоновское взаимодействие заряженных частиц, в частности электронов и дырок, друг с другом или с заряженными примесями, сильно ослаблено, если они находятся друг от друга на расстоянии, превышающем размеры элементарной ячейки, что и позволяет во многих случаях рассматривать движение каждого носителя независимо от других. Иначе свободные носители тока имели бы тенденцию образовывать комплексы, состоящие и из электрона и дырки Или заряженной примесной частицы с энергиями связи ~ 10 эв. Разорвать эти связи за счёт теплового движения, чтобы получить заметную электропроводность, при температурах ~ 300 К было бы практически невозможно.

  Однако попарное связывание электронов и дырок в комплексы всё же происходит, но связь эта слаба (Есв ~ 10-2 эв) и легко разрушается тепловым движением. Такие связанные состояния электрона и дырки в Полупроводники, называются экситонами, проявляются в спектрах поглощения в виде узких линий, сдвинутых на величину Есв от края поглощения в сторону энергий, меньших энергий фотона. Экситоны образуются, когда электрон, поглотивший квант света и оставивший дырку на своём месте в валентной зоне, не уходит от этой дырки, а остаётся вблизи неё, удерживаемый кулоновским притяжением.

  Прозрачность Полуп

В Большой Советской Энциклопедии рядом со словом "Полупроводники"

Полуприцеп | Буква "П" | В начало | Буквосочетание "ПО" | Полупроводники аморфные


Статья про слово "Полупроводники" в Большой Советской Энциклопедии была прочитана 13893 раз


Интересное