БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Ортогональные многочленыОпределение "Ортогональные многочлены" в Большой Советской Энциклопедии
Ортогональные многочлены, специальные системы многочленов {рп (х)}; n = 0, 1, 2,..., ортогональных с весом r(х) на отрезке [а, b ] (см. Ортогональная система функций). Нормированная система Ортогональные многочлены обозначается через , а система Ортогональные многочлены, старшие коэффициенты которых равны 1,— через . В краевых задачах математической физики часто встречаются системы Ортогональные многочлены, для которых вес r(х) удовлетворяет дифференциальному уравнению (Пирсона) Наиболее важные системы Ортогональные многочлены (классические) относятся к этому типу; они получаются (с точностью до постоянного множителя) при указанных ниже а, b и r(х). 1) Якоби многочлены {Рп (l,m)(х)} — при а = —1, b = 1 r(х) = (1—х)l (1 + x)m, l > —1, m > —1. Специальные частные случаи многочленов Якоби соответствуют следующим значениям l и m: l = m— ультрасферические многочлены (их иногда называют многочленами Гегенбауэра); l = m = —1/2, т. е. — Чебышева многочлены 1-го рода Tn (x); l = m = 1/2, т. е. — Чебышева многочлены 2-го рода Un (x); l = m = 0, т. е. r(х) º 1 — Лежандра многочлены Рп (х). 2) Лагерра многочлены Ln (x) — при а = 0, b = + ¥ и r(х) = е—х (их наз. также многочленами Чебышева — Лагерра) и обобщённые многочлены Лагерра — при . 3) Эрмита многочлены Нn (х) — при а = —¥, b = + ¥ и (их называют также многочленами Чебышева — Эрмита).
Ортогональные многочлены обладают многими общими свойствами. Нули многочленов рn (х) являются действительными и простыми и расположены внутри [а, b ]. Между двумя последовательными нулями многочлена рn (х) лежит один нуль многочлена pn+1 (х). Многочлен рn (х) может быть представлен в виде т. н. формулы Родрига
где An — постоянное, а b(х) см. формулу (*). Каждая система Ортогональные многочлены обладает свойствами замкнутости. Три последовательных Ортогональные многочлены , , связаны рекуррентным соотношением:
Общая теория Ортогональные многочлены построена П. Л. Чебышевым. Основным аппаратом изучения Ортогональные многочлены явилось для него разложение интеграла в непрерывную дробь с элементами вида х — an и числителями ln—1. Знаменатели jn (х)/рn (х) подходящих дробей этой непрерывной дроби образуют систему Ортогональные многочлены на отрезке [a, b ] относительно веса r(х).
Статья про "Ортогональные многочлены" в Большой Советской Энциклопедии была прочитана 769 раз |
TOP 20
|
|||||||