БНБ "БСЭ" (95279) - Photogallery - Естественные науки - Математика - Технология
|
Холла эффектОпределение "Холла эффект" в Большой Советской Энциклопедии
Ex = Rhjsin a, (1)
где a угол между векторами Н и f (a < 180°). Если H ^ j, то величина поля Холла Ex максимальна: Ex = RHj. Величина R, называется коэффициентом Холла, является основной характеристикой Холла эффект Эффект открыт Э. Г. Холлом в 1879 в тонких пластинках золота. Для наблюдения Холла эффект вдоль прямоугольных пластин из исследуемых веществ, длина которых l значительно больше ширины b и толщины d, пропускается ток I = jbd (см. рис.); магнитное поле перпендикулярно плоскости пластинки. На середине боковых граней, перпендикулярно току, расположены электроды, между которыми измеряется эдс Холла Vx. Т. к. эдс Холла меняет знак на обратный при изменении направления магнитного поля на обратное, то Холла эффект относится к нечётным гальваномагнитным явлениям.
Простейшая теория Холла эффект объясняет появление эдс Холла взаимодействием носителей тока (электронов проводимости и дырок) с магнитным полем. Под действием электрического поля носители заряда приобретают направленное движение (дрейф), средняя скорость которого (дрейфовая скорость) vдр ¹ 0. Плотность тока в проводнике j = n×evдр, где n — концентрация числа носителей, e — их заряд. При наложении магнитного поля на носители действует Лоренца сила: F = е [Нvдр], под действием которой частицы отклоняются в направлении, перпендикулярном vдр и Н. В результате в обеих гранях проводника конечных размеров происходит накопление заряда и возникает электростатическое поле — поле Холла. В свою очередь поле Холла действует на заряды и уравновешивает силу Лоренца. В условиях равновесия eEx = eHvдр, , отсюда R = 1/ne см3/кулон. Знак R совпадает со знаком носителей тока. Для металлов, у которых концентрация носителей (электронов проводимости) близка к плотности атомов (n » 1022 см-3), R ~ 10-3 см3/кулон, у полупроводников концентрация носителей значительно меньше и R~10-5 см3/кулон. Коэффициент Холла R может быть выражен через подвижность носителей заряда m = еt/m* и удельную электропроводность s = j/E = envдрЕ:
Иногда при описании Холла эффект вводят угол Холла j между током j и направлением суммарного поля Е: tgj = Ex/E = Wt, где W — циклотронная частота носителей заряда. В слабых полях (Wt << 1) угол Холла j » Wt можно рассматривать как угол, на который отклоняется движущийся заряд за время t. Приведённая теория справедлива для изотропного проводника (в частности, для поликристалла), у которого m* и t — постоянные величины. Коэффициент Холла (для изотропных полупроводников) выражается через парциальные проводимости sэ и sд и концентрации электронов nэ и дырок nд: При nэ = nд = n для всей области магнитных полей , а знак R указывает на преобладающий тип проводимости. Для металлов величина R зависит от зонной структуры и формы Ферми поверхности. В случае замкнутых поверхностей Ферми и в сильных магнитных полях (Wt >> 1) коэффициент Холла изотропен, а выражения для R совпадают с формулой 4, б. Для открытых поверхностей Ферми коэффициент R анизотропен. Однако, если направление Н относительно кристаллографических осей выбрано так, что не возникает открытых сечений поверхности Ферми, то выражение для R аналогично 4, б. В ферромагнетиках на электроны проводимости действует не только внешнее, но и внутреннее магнитное поле: В = Н + 4pМ. Это приводит к особому ферромагнитному Холла эффект Экспериментально обнаружено, что Ex= (RB + RaM) j, где R — обыкновенный, a Ra — необыкновенный (аномальный) коэффициент Холла. Между Ra и удельным электросопротивлением ферромагнетиков установлена корреляция.
Исследования Холла эффект сыграли важную роль в создании электронной теории твёрдого тела. Холла эффект — один из наиболее эффективных современных методов изучения энергетического спектра носителей заряда в металлах и полупроводниках. Зная R, можно определить знак носителей и оценить их концентрацию, а также часто сделать заключение о количестве примесей в веществе, например в полупроводнике. Он имеет также ряд практических применений: используется для измерения напряжённости магнитного поля (см. Магнитометр), усиления постоянных токов (в аналоговых вычислительных машинах), в измерительной технике (бесконтактный амперметр) и т.д. (подробно см. Холла эдс датчик).
Лит.: Hall Е. Н., On the new action of magnetism on a permanent electric current, «The Philosophical Magazine», 1880, v. 10, p. 301; Ландау Л. Д., Лифшиц Е. М., Электродинамика сплошных сред, М., 1959; Займан Дж., Электроны и фононы. Теория явлений переноса в твердых телах, пер. с англ., М., 1962; Вайсс Г., физика гальваномагнитных полупроводниковых приборов и их применение, пер. с нем., М., 1974; Ангрист Ст., Гальваномагнитные и термомагнитные явления, в сборнике: Над чем думают физики, в. 8. Физика твёрдого тела. Электронные свойства твёрдого тела, М., 1972, с. 45—55.
Статья про "Холла эффект" в Большой Советской Энциклопедии была прочитана 746 раз |
TOP 20
|
|||||||||