БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ
Навигация:

Библиотека DJVU
Photogallery

БСЭ

Статистика:


Металлы

Значение слова "Металлы" в Большой Советской Энциклопедии


Металлы, простые вещества, обладающие в обычных условиях характерными свойствами: высокой электропроводностью и теплопроводностью, отрицательным температурным коэффициентом электропроводности,
способностью хорошо отражать электромагнитные волны (блеск и непрозрачность), пластичностью. Металлы в твёрдом состоянии имеют кристаллическое строение. В парообразном состоянии Металлы одноатомны.

  Перечисленные выше характерные свойства Металлы обусловлены их электронным строением. Атомы Металлы легко отдают внешние (валентные) электроны. В кристаллической решётке Металлы не все электроны связаны со своими атомами. Некоторая их часть (~ 1 на атом) подвижна. Эти электроны могут более или менее свободно перемещаться по Металлы Существование свободных электронов (электронов проводимости) в Металлы объясняется зонной теорией (см. Твёрдое тело). Металлы можно представить себе в виде остова из положительных ионов, погруженного в «электронный газ». Последний компенсирует силы электростатического отталкивания между положительными ионами и тем самым связывает их в твёрдое тело (металлическая связь).

  Из известных (1974) 105 химических элементов 83 - Металлы и лишь 22 - неметаллы. Если в длинном или «полудлинном» варианте периодической системы элементов Менделеева провести прямую линию от бора до астата (табл. 1), то можно считать, что неметаллы расположены на этой линии и справа от неё, а Металлы - слева.

  Не следует, однако, абсолютизировать ни свойства, характерные для Металлы, ни их отличия от неметаллов. Металлический блеск присущ только компактным металлическим образцам. Тончайшие листки Ag и Au (толщиной 10-4 мм) просвечивают голубовато-зелёным цветом. Мельчайшие порошки Металлы часто имеют чёрный или черно-серый цвет. Некоторые металлы (Zn, Sb, Bi) при комнатной температуре хрупки и становятся пластичными только при нагревании.

  Вся совокупность перечисленных выше свойств присуща типичным Металлы (например, Cu, Au, Ag, Fe) при обычных условиях (атмосферном давлении, комнатной температуре). При очень высоких давлениях (~ 105-106 ам) свойства Металлы могут существенно измениться, а неметаллы приобрести металлические свойства.

  Многие простые вещества по одним свойствам можно отнести к Металлы, по др. - к неметаллам. Особенно много такого рода «нарушений» имеет место вблизи границы, проведённой в табл. 1. Так, Ge по внешнему виду - Металлы, в химическом отношении проявляет себя скорее как Металлы (легче отдаёт электроны, чем принимает), а по величине и характеру электропроводности Ge - полупроводник. Сурьма Sb имеет электросопротивление слишком большое для Металлы, однако температурный коэффициент сопротивления у Sb положительный и большой, как у Металлы; по способности отдавать электроны Sb также относится к Металлы As, Sb и Bi иногда называют полуметаллами. Po по внешнему виду - Металлы, в химическом отношении ему присущи свойства и Металлы, и неметалла - наряду с положительной валентностью (точнее окислительным числом) проявляется и отрицательная (- 2).

  Металлические сплавы по свойствам имеют много общего с Металлы, поэтому в физической, технической и экономической литературе нередко к Металлы относят также и сплавы.

  Историческая справка. Термин «металл» произошёл от греческого слова métallon (от metalléuo - выкапываю, добываю из земли), которое означало первоначально копи, рудники (в этом смысле оно встречается у Геродота, 5 в. до н. э.). То, что добывалось в рудниках, Платон называл metalléia. В древности и в средние века считалось, что существует только 7 Металлы: золото, серебро, медь, олово, свинец, железо, ртуть (см. Знаки химические). По алхимическим представлениям, Металлы зарождались в земных недрах под влиянием лучей планет и постепенно крайне медленно совершенствовались, превращаясь в серебро и золото (см. Алхимия). Алхимики полагали, что Металлы - вещества сложные, состоящие из «начала металличности» (ртути) и «начала горючести» (серы). В начале 18 в. получила распространение гипотеза, согласно которой Металлы состоят из земли и «начала горючести» - флогистона. Металлы В. Ломоносов насчитывал 6 Металлы (Au, Ag, Cu, Sn, Fe, Pb) и определял Металлы как «светлое тело, которое ковать можно». В конце 18 в. А. Л. Лавуазье опроверг гипотезу флогистона и показал, что Металлы - простые вещества. В 1789 Лавуазье в руководстве по химии дал список простых веществ, в который включил все известные тогда 17 Металлы (Sb, Ag, As, Bi, Со, Cu, Sn, Fe, Mn, Hg, Mo, Ni, Au, Pt, Pb, W, Zn). По мере развития методов химического исследования число известных Металлы возрастало. В 1-й половине 19 в. были открыты спутники Pt, получены путём электролиза некоторые щелочные и щёлочноземельные Металлы, положено начало разделению редкоземельных металлов, открыты неизвестные Металлы при химическом анализе минералов. В 1860-63 методом спектрального анализа были открыты Cs, Rb, Tl, In. Блестяще подтвердилось существование Металлы, предсказанных Д. И. Менделеевым на основе его периодического закона. Открытие радиоактивности в конце 19 в. повлекло за собой поиски природных радиоактивных Металлы, увенчавшиеся полным успехом. Наконец, методом ядерных превращений начиная с середины 20 в. были искусственно получены радиоактивные Металлы, в частности трансурановые элементы.

  В конце 19 - начале 20 вв. получила физико-химическую основу металлургия - наука о производстве Металлы из природного сырья. Тогда же началось исследование свойств Металлы и их сплавов в зависимости от состава и строения (см. Металловедение, Металлофизика).

  Химические свойства. В соответствии с местом, занимаемым в периодической системе элементов (табл. 1), различают Металлы главных и побочных подгрупп. Металлы главных подгрупп (подгруппы а) называют также непереходными. Эти Металлы характеризуются тем, что в их атомах происходит последовательное заполнение s- и р-электронных оболочек. В атомах Металлы побочных подгрупп (подгруппы б), называют переходными, происходит достраивание d- и f-оболочек, в соответствии с чем их делят на d-группу и две f-группы - лантаноиды и актиноиды. В подгруппы а входят 22 Металлы: Li, Na, К, Rb, Cs, Fr (I a); Be, Mg, Ca, Sr, Ba, Ra (II a); Al, Ga, In, Tl (III a); Ge, Sn, Pb (IV a); Sb, Bi (V a); Po (VI а). В подгруппы б входят: 1) 33 переходных металла d-группы [Cu, Ag, Au (I б), Zn, Cd, Hg (II б); Sc, Y, La, Ac (III б); Ti, Zr, Hf, Ku (IV б); V, Nb, Ta, элемент с Z = 105 (V б), Cr, Mo, W (VI б), Mn, Te, Re (VII б), Fe, Co, Ni, Ru, Rh, Pd, 0s, lr, Pt (VIII б)]; 2) 28 Металлы f-группы (14лантаноидов и 14 актиноидов).

  Электронная структура атомов некоторых d-элементов имеет ту особенность, что один из электронов внешнего уровня переходит на d-подуровень. Это происходит при достройке этого подуровня до 5 или 10 электронов. Поэтому электронная структура валентных подуровней атомов d-элементов, находящихся в одной подгруппе, не всегда одинакова. Например, Cr и Mo (подгруппа VI б) имеют внешнюю электронную структуру соответственно 3d54s1 и 4d55s1, тогда как у W она 5d46s2. В атоме Pd (подгруппа VIII б) два внешних электрона «перешли» на соседний валентный подуровень, и для атома Pd наблюдается d10 вместо ожидаемого d8s2.

  Металлы присущи многие общие химические свойства, обусловленные слабой связью валентных электронов с ядром атома: образование положительно заряженных ионов (катионов), проявление положительной валентности (окислительного числа), образование основных окислов и гидроокисей, замещение водорода в кислотах и т.д. Металлические свойства элементов можно сравнить, сопоставляя их электроотрицательность [способность атомов в молекулах (в ковалентной связи) притягивать электроны, выражена в условных единицах]; элементу присущи свойства Металлы тем больше, чем ниже его электроотрицательность (чем сильнее выражен электроположительный характер).

  В периодической системе элементов Менделеева (табл. 1) в пределах каждого периода, начиная со 2-го, с увеличением атомного номера электроотрицательность возрастает от 2 до 7, начиная со щелочного металла и кончая галогеном (переход от Металлы к неметаллам). В пределах подгрупп (а и б) с увеличением атомного номера электроотрицательность в общем уменьшается, хотя и не всегда последовательно. В семействах лантаноидов и актиноидов она сохраняется примерно на одном уровне.

  Если расположить Металлы в последовательности увеличения их нормальных потенциалов, получим т. н. ряд напряжений или ряд активностей (табл. 2 и 3). Рассмотрение этого ряда показывает, что по мере приближения к его концу - от щелочных и щёлочноземельных Металлы к Pt и Au - электроположительный характер членов ряда уменьшается. Металлы от Li по Na вытесняют H2 из H2O на холоду, а от Mg по Tl - при нагревании. Все Металлы, стоящие в ряду выше H2, вытесняют его из разбавленных кислот (на холоду или при нагревании). Металлы, стоящие ниже H2, растворяются только в кислородных кислотах (таких, как концентрированная H2SO4 при нагревании или HNO3), а Pt, Au - только в царской водке (Ir нерастворим и в ней).

  Металлы от Li по Na легко реагируют с O2 на холоду; последующие члены ряда соединяются с O2 только при нагревании, а lr, Pt, Au в прямое взаимодействие с O2 не вступают.

  Окислы Металлы от Li по Al (табл. 2) и от La по Zn (табл. 3) трудно восстановимы; по мере продвижения к концу ряда восстановимость окислов увеличивается, а окислы последних его членов разлагаются на Металлы и O2 уже при слабом нагревании. О прочности соединений Металлы с кислородом (и др. неметаллами) можно судить и по разности их электроотрицательностей (табл. 1): чем она больше, тем прочнее соединение.

  Табл. 2. - Нормальные электродные потенциалы непереходных металлов

Система

Нормальный потенциал при 25 °С, в

Система

Нормальный потенциал при 25 °C, в

Система

Нормальный потенциал при 25 °С, в

Li Û Li+ + е

-3,0245

Mg Û Mg2+ + 2е

-2,375

Sn Û Sn2+ + 2e

-0,140

Cs Û Cs+ + e

-3,020

Be Û Be2+ + 2e

-1,69

Pb Û Pb2+ + 2e

-0,126

Rb Û Rb+ + e

-2,990

Al Û Al3+ + 3e

-1,67

Ha Û 2H+ + 2e

0

К Û K+ + e

-2,925

Ga Û Ga3+ + 3e

-0,52

Sb Û Sb3+ + 3e

+0,20

Ra Û Ra2+ + 2е

-2,92

Ga Û Ga2+ + 2e

-0,45

Bi Û Bi3+ + 3e

+0,23

Ba Û Ba2+ + 2e

-2,90

In Û ln3++ 3e

-0,34

Po Û Po3+ + 3e

+0,56

Sr Û Sr2+ + 2e

-2,89

Tl Û Tl++ е

-0,338

Po Û Po2+ + 2е

+0,65

Ca Û Ca2+ + 2e

-2,87

In Û ln2+ + 2e

-0,25

Tl Û Tl3+ + 3e

+0,71

Na Û Na+ + е

-2,714

 

 

Pb Û Pb4+ + 4е

+0,80

  Табл. 3. - Нормальные электродные потенциалы переходных металлов

Система

Потенциал при 25 °С, в

Система

Потенциал при 25 °C, в

Система

Потенциал при 25 °C, e

Ac Û Ac3+ + 3e

-2,60

Cr Û Cr3+ + 3е

-0,74

Ru Û Ru2+ + 2e

+0,45

La Û La3+ + 3e

-2,52

Fe Û Fe2+ + 2e

-0,44

Mn Û Mn3+ + 3e

+0,47

Y Û Y3+ + 3e

-2,37

Cd Û Cd2+ + 2e

-0,402

Cu Û Cu+ + e

+0,522

Sc Û Sc3+ + 3e

-2,08

Re Û Re3+ + 3e

-0,3

Rh Û Rh2+ + 2e

+0,60

Hf Û Hf4+ + 4е

-1,70

Co Û Co2+ + 2e

-0,277

W Û W6+ + 6e

+0,68

Ti Û Ti3+ + 3е

-1,63

Ni Û Ni2+ + 2е

-0,25

Rh Û Rh3+ + 3e

+0,70

Zr Û Zr4+ + 4е

-1,56

Те Û Te2+ + 2e

-0,24

0s Û Os2+ + 2e

+0,70

V Û V2+ + 2e

-1,18

Mo Û Mo3+ + 3е

-0,20

Ag Û Ag+++с

+0,779

Mn Û Mn2++ 2e

-1,18

H2 Û 2H+ + 2e

0,000

Pd Û Pd2+ + 2e

+0,83

Nb Û Nb3+ + 3e

-1,10

Fe Û Fe3+ + 3e

+0,036

Hg Û Hg2+ + 2e

+0,854

V Û

Статья про слово "Металлы" в Большой Советской Энциклопедии была прочитана 10907 раз


Интересное