БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ БОЛЬШАЯ СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ, БСЭ
Навигация:

Библиотека DJVU
Photogallery

БСЭ

Статистика:


Динамика (механич.)

Значение слова "Динамика (механич.)" в Большой Советской Энциклопедии


Динамика (от греч. dynamikós — сильный, от dýnamis — сила), раздел механики, посвящённый изучению движения материальных тел под действием приложенных
к ним сил. В основе Динамика (механич.) лежат три закона И. Ньютона (см. Ньютона законы механики), из которых как следствия получаются все уравнения и теоремы, необходимые для решения задач Динамика (механич.)

  Согласно первому закону (закону инерции) материальная точка, на которую не действуют силы, находится в состоянии покоя или равномерного прямолинейного движения; изменить это состояние может только действие силы. Второй закон, являющийся основным законом Динамика (механич.), устанавливает, что при действии силы F материальная точка (или поступательно движущееся тело) с массой m получает ускорение w, определяемое равенством

  mw = F.          (1)

Третьим законом является закон о равенстве действия и противодействия (см. Действия и противодействия закон). Когда к телу приложено несколько сил, F в уравнении (1) означает их равнодействующую. Этот результат следует из закона независимости действия сил, согласно которому при действии на тело нескольких сил каждая из них сообщает телу такое же ускорение, какое она сообщила бы, если бы действовала одна.

  В Динамика (механич.) рассматриваются два типа задач, решения которых для материальной точки (или поступательно движущегося тела) находятся с помощью уравнения (1). Задачи первого типа состоят в том, чтобы, зная движение тела, определить действующие на него силы. Классическим примером решения такой задачи является открытие Ньютоном закона всемирного тяготения: зная установленные И. Кеплером на основании обработки результатов наблюдений законы движения планет (см. Кеплера законы), Ньютон показал, что это движение происходит под действием силы, обратно пропорциональной квадрату расстояния между планетой и Солнцем. В технике такие задачи возникают при определении сил, с которыми движущиеся тела действуют на связи, т. е. др. тела, ограничивающие их движение (см. Связи механические), например при определении сил давления колёс на рельсы, а также при нахождении внутренних усилий в различных деталях машин и механизмов, когда законы движения этих машин (механизмов) известны.

  Задачи второго типа, являющиеся в Динамика (механич.) основными, состоят в том, чтобы, зная действующие на тело силы, определить закон его движения. При решении этих задач необходимо ещё знать так называемые начальные условия, т. е. положение и скорость тела в момент начала его движения под действием заданных сил. Примеры таких задач: зная величину и направление скорости снаряда в момент его вылета из канала ствола (начальная скорость) и действующие на снаряд при его движении силу тяжести и силу сопротивления воздуха, найти закон движения снаряда, в частности его траекторию, горизонтальную дальность полёта, время движения до цели и др.; зная скорость автомобиля в момент начала торможения и силу торможения, найти время движения и путь до остановки; зная силу упругости рессор и вес кузова вагона, определить закон его колебаний, в частности частоту этих колебаний, и многие др.

  Задачи Динамика (механич.) для твёрдого тела (при его непоступательном движении) и различных механических систем решаются с помощью уравнений, которые также получаются как следствия второго закона Динамика (механич.), применяемого к отдельным частицам системы или тела; при этом ещё учитывается равенство сил взаимодействия между этими частицами (третий закон Динамика (механич.)). В частности, таким путём для твёрдого тела, вращающегося вокруг неподвижной оси z, получается уравнение:

  lze = Mz,

где Izzмомент инерции тела относительно оси вращения, e — угловое ускорение тела, Mzвращающий момент, равный сумме моментов действующих сил относительно оси вращения. Это уравнение позволяет, зная закон вращения, т. е. зависимость e от времени, найти вращающий момент (задача первого типа) или, зная вращающий момент и начальные условия, т. е. начальное положение тела и начальную угловую скорость, найти закон вращения (задача второго типа).

  При изучении движения механических систем часто применяют так называемые общие теоремы Динамика (механич.), которые также могут быть получены как следствия 2-го и 3-го законов Динамика (механич.) К ним относятся теоремы о движении центра масс (или центра инерции) и об изменении количества движения, момента количества движения и кинетической энергии системы. Иной путь решения задач Динамика (механич.) связан с использованием вместо 2-го закона Динамика (механич.) др. принципов механики (см. Д" Аламбера принцип, Д" Аламбера — Лагранжа принцип, Вариационные принципы механики) и получаемых с их помощью уравнений движения, в частности Лагранжа уравнений механики.

  Уравнение (1) и все следствия из него справедливы только при изучении движения по отношению к так называемой инерциальной системе отсчёта, которой для движений внутри солнечной системы с высокой степенью точности является звёздная система (система отсчёта с началом в центре Солнца и осями, направленными на удалённые звёзды), а при решении большинства инженерных задач — система отсчёта, связанная с Землёй. При изучении движения по отношению к неинерциальным системам отсчёта, т. е. системам, связанным с ускоренно движущимися или вращающимися телами, уравнение движения можно также составлять в виде (1), если только к силе F прибавить так называемую переносную и Кориолиса силы инерции (см. Относительное движение). Такие задачи возникают при изучении влияния вращения Земли на движение тел по отношению к земной поверхности, а также при изучении движения различных приборов и устройств, установленных на движущихся объектах (судах, самолётах, ракетах и др.).

  Помимо общих методов изучения движения тел под действием сил, в Динамика (механич.) рассматриваются специальные задачи: теория гироскопа, теория механических колебаний, теория устойчивости движения, теория удара, механика тела переменной массы и др. С помощью законов Динамика (механич.) изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов (см. Упругости теория, Пластичности теория, Гидроаэромеханика, Газовая динамика). Наконец, в результате применения методов Динамика (механич.) к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, внешняя баллистика, динамика паровоза, автомобиля, самолёта, динамика ракет и т.п.

  Методы Динамика (механич.), базирующейся на законах Ньютона и называются классической Динамика (механич.), описывают движения самых различных объектов (от молекул до небесных тел), происходящие со скоростями от долей мм/сек до десятков км/сек (скорости ракет и небесных тел), и имеют огромное значение для современного естествознания и техники. Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света; такие движения подчиняются др. законам (см. Квантовая механика, Относительности теория).

 

  Лит. см. при ст. Механика.

  С. М. Тарг.

 

В Большой Советской Энциклопедии рядом со словом "Динамика (механич.)"

Буква "Д" | В начало | Буквосочетание "ДИ" |


Статья про слово "Динамика (механич.)" в Большой Советской Энциклопедии была прочитана 15206 раз


Интересное